The interest in bioconversion through fermentation of sprouts produced in smart farms is increasing due to their potential health benefits. Codonopsis lanceolata (CL) is reported to alleviate inflammatory conditions, but much research is still needed to determine which types and parts of CL are most effective. This study investigated the anti-inflammatory effects of a fermented extract of CL sprouts’ aerial part (F-CSA) against LPS-stimulated RAW 264.7 macrophages and mice. In the screening test, F-CSA showed the most substantial anti-inflammatory effect among several samples, containing the highest total flavonoids, tannins, and polyphenols. UPLC-ESI-Q/TOF-MS and HPLC analysis revealed that F-CSA had the highest amount of luteolin among all the CL samples analyzed. F-CSA reduced the release of inflammatory cytokines and mediators such as NO and PGE2 by inhibiting the expression levels of iNOS and COX-2 in LPS-stimulated macrophages. Further, we found that the anti-inflammatory effects of F-CSA were mediated by inhibiting the JNK/NF-κB signaling pathway. Moreover, F-CSA improved survival rates and reduced plasma levels of NO and IL-6 in CD1 mice stimulated with LPS. These findings suggest that F-CSA, which contains luteolin, can alleviate inflammation in LPS-induced RAW 264.7 cells and a CD1 mouse model by inhibiting the JNK/NF-κB signaling pathways.
Particulate matter (PM10)-induced respiratory illnesses are difficult to investigate in trans-well culture systems. Microphysiological systems offer the capacity to mimic these phenomena to analyze any possible hazards that PM10 exposure poses to respiratory system of Humans. This study proposes an on-chip healthy human lung distal airway model that efficiently reconstitutes in vivo-like environmental conditions in a microfluidic device. The lung-on-chip model comprises a TEER sensor chip and portable microscope for continuous monitoring. To determine the efficacy of our model, we assessed the response to exposure to three PM environmental conditions (mild, average, and severe) and analyzed the relevant in vivo physiological and toxicological data using the airway model. Our results revealed significant increases in the levels of the IL-13, IL-6, and MUC5AC pathological biomarkers, which indicate increased incidences of on-chip asthma and chronic obstructive pulmonary disease conditions. Overall, we deduced that this model will facilitate the identification of potential therapeutics and the prevention of chronic life-threatening toxicities and pandemics such as COVID-19. The proposed system provides basic data for producing an improved in organ-on-chip technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.