23Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. 24The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in 25
The functional reconstruction of acetoin and meso-2,3-butanediol (meso-2,3-BD) biosynthetic pathways in Escherichia coli have been explored systematically. Pathway construction involved the in vivo screening of prospective pathway isozymes of yeast and bacterial origin. After substantial engineering of the host background to increase pyruvate availability, E. coli YYC202(DE3) ldhA − ilvC − expressing ilvBN from E. coli and aldB from L. lactis (encoding acetolactate synthase and acetolactate decarboxylase activities, respectively) was able to produce up to 870 mg/L acetoin, with no coproduction of diacetyl observed. These strains were also found to produce small quantities of meso-2,3-BD, suggesting the existence of endogenous 2,3-BD dehydrogenase activity. Finally, the coexpression of bdh1 from S. cerevisiae, encoding 2,3-BD dehydrogenase, in this strain resulted in the production of up to 1120 mg/L meso-2,3-BD, with glucose a yield of 0.29 g/g. While disruption of the native lactate biosynthesis pathway increased pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-BD was found to be the most important consequence of ldhA deletion.
Genes enhancing lycopene production in Escherichia coli were identified through colorimetric screening of shot-gun library clones constructed with E. coli chromosomal DNA. These E. coli cells had been engineered to produce lycopene, a red-colored carotenoid, which enabled screening for genes that enhance lycopene production. Six clones with enhanced lycopene production were isolated. Among 13 genes in these clones, dxs, appY, crl, and rpoS were found to be involved in enhanced lycopene production. While dxs and rpoS have been already reported to enhance lycopene production, appY and crl have not. DXP (1-deoxy-D-xylulose-5-phosphate) synthase is encoded by dxs and participates in the rate-limiting step in the synthesis of isopentenyl pyrophosphate (IPP), a building block of lycopene. Sigma S factor, encoded by rpoS, regulates transcription of genes induced at the stationary phase. The appY and crl genes encode transcriptional regulators related to anaerobic energy metabolism and the formation of curli surface fibers, respectively. E. coli harboring appY plasmids produced 2.8 mg lycopene/g dry cell weight (DCW), the same amount obtained with dxs despite the fact that appY is not directly involved in the lycopene synthesis pathway. The co-expression of appY, crl, and rpoS with dxs synergistically enhanced lycopene production. The co-expression of appY with dxs produced eight times the amount of lycopene (4.7 mg/g DCW) that was produced without expression of both genes (0.6 mg/g DCW).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.