This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Tobacco smoking, a risk factor for several human diseases, can lead to alterations in DNA methylation. Smoking is a key source of cadmium exposure; however, there are limited studies examining DNA methylation alterations following smoking-related cadmium exposure. To identify such cadmium exposure-related DNA methylation, we performed genome-wide DNA methylation profiling using DNA samples from 50 smokers and 50 non-smokers. We found that a total of 136 CpG sites (including 70 unique genes) were significantly differentially methylated in smokers as compared to that in non-smokers. The CpG site cg05575921 in the AHRR gene was hypomethylated (Δ ß > − 0.2) in smokers, which was in accordance with previous studies. The rs951295 (within RNA gene LOC105370802) and cg00587941 sites were under-methylated by > 15% in smokers, whereas cg11314779 (within CELF6) and cg02126896 were over-methylated by ≥ 15%. We analyzed the association between blood cadmium concentration and DNA methylation level for 50 smokers and 50 non-smokers. DNA methylation rates of 307 CpG sites (including 207 unique genes) were significantly correlated to blood cadmium concentration (linear regression P value < 0.001). The four significant loci (cg05575921 and cg23576855 in AHRR, cg03636183 in F2RL3, and cg21566642) were under-methylated by > 10% in smokers compared to that in non-smokers. In conclusion, our study demonstrated that DNA methylation levels of rs951295, cg00587941, cg11314779, and cg02126896 sites may be new putative indicators of smoking status. Furthermore, we showed that these four loci may be differentially methylated by cadmium exposure due to smoking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.