In this study, mesoporous silica SBA-15 was functionalized with primary, secondary, and tertiary aminofunctional silanes onto the channel walls using a postsynthesis method as a first attempt to purify succinic acid from a fermentation broth. Ordered mesostructures of pristine and functionalized SBA-15 were evaluated using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and N 2 adsorption/ desorption isotherms. 13 C and 29 Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) with 1 H cross-polarization (CP-MAS) and thermogravimetric analysis (TGA) revealed that amino-functional silanes were covalently bound to the active layer of pore walls. The distribution and accessibility of amine groups were characterized by scanning transmission electron microscopy (STEM), elemental analysis, and conductivity measurements. Adsorption isotherms were analyzed using the Sips model, simultaneously obtaining the temperature dependence of isotherms derived from the isosteric heats of adsorption. Pyruvic acid had higher adsorption capacities than succinic acid on amine-functionalized SBA-15, resulting in the selective adsorption of pyruvic acid from binary acid solution. In particular, SBA-15 functionalized with primary amino silane obtained higher selectivity on pyruvic acid compared to that of other amine-functionalized SBA-15. The adsorption capacities of pyruvic acid at equilibrium are dependent on the basicity and distribution of amino silanes. The isosteric heats between 10 and 100 kJ/mol and desorption energy between 1 and 10 kJ/mol revealed that the adsorption of pyruvic and succinic acid originated from the formation of an acid-amine complex via hydrogen bonding. It is proposed that the amine functionalization of ordered mesoporous solids provides a simple and effective method of separating or purifying useful carboxylic acids.
We review the state of the art in microfluidic separation technique based two-phase laminar flow with an application focus on chemical and biological sample. As we describe herein, two-phase laminar flow in the microfluidic extraction has several biological and engineering advantages over other methods including high reproducibility, biocompatibility, and selectivity. We review advances in applications of two-phase laminar flow and examine key parameters such as flow rate, phase composition, and surface charge property, how these can affect extract performance with the technology including microfluidic separation system. A special technology focus is given to emerging novel integrative microfluidic extraction, which aims to merge aqueous phase laminar flow and electric field technologies into simple packages. We conclude with a brief discussion of some of the emerging challenges in the field and some of the approaches that are likely to enhance their application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.