The existence of sub-nanometer plasmonic hot-spots and their relevance in spectroscopy and microscopy applications remain elusive despite a few recent theoretical and experimental evidence supporting this possibility. In this Letter, we present new spectroscopic evidence suggesting that Angstrom-sized hot-spots exist on the surfaces of plasmon-excited nanostructures. Surface-enhanced Raman scattering (SERS) spectra of 4,4'-biphenyl dithiols placed in metallic junctions show simultaneously blinking Stokes and anti-Stokes spectra, some of which exhibit only one prominent vibrational peak. The activated vibrational modes were found to vary widely between junction sites. Such site-specific, single-peak spectra could be successfully modeled using single-molecule SERS induced by a hot-spot with a diameter no larger than 3.5 Å, located at the specific molecular sites. Furthermore, the model, which assumes the stochastic creation of hot-spots on locally flat metallic surfaces, consistently reproduces the intensity distributions and occurrence statistics of the blinking SERS peaks, further confirming that the sources of the hot-spots are located on the metallic surfaces. This result not only provides compelling evidence for the existence of Angstrom-sized hot-spots but also opens up the new possibilities for the vibrational and electronic control of single-molecule photochemistry and real-space visualization of molecular vibration modes.
A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions. The solid-state dewetting of a Ag thin film (thickness of ∼10 nm) using a continuous-wave laser (∼1 MW/cm 2 ) generates a closely packed assembly of hemispherical Ag nanoislands. Some of these nanoislands provide substantial plasmonic-field enhancement that is sufficient for single-molecule detection and plasmon-catalyzed chemical reaction. Such hot spot structures can be patterned on the substrate with a spatial resolution of better than 1 μm. In integrated analytical devices, the patterned SERS hot spots can be used as position-specific chemical-sensing elements.S urface-enhanced Raman scattering (SERS) 1−4 spectrosco-
Dimers of metallic nanowires (NWs) with nanometric gaps could be an alternative to overcome the limitations of existing plasmonic waveguides. The gap-surface plasmon polaritons (gap-SPPs) of the dimers may propagate along the NW without crosstalk and greatly enhance the coupling efficiency with an emitter, enabling ultracompact optical circuits. Such a possibility has not been realized, and we experimentally show its possibility. The gap-SPPs of the AgNW−molecule−AgNW structure, with a gap of 3−5 nm defined by the molecules, are visualized using the surfaceenhanced Raman scattering (SERS) of the molecules. The SERS images, representing the gap-field intensity distribution, reveal the decay and beating of the monopole−monopole and dipole−dipole gap modes. The propagation lengths of the two (l 1 = 0.5−2 μm and l 2 = 5−8 μm) closely follow the model prediction with a uniform gap, confirming that the scattering loss induced by the gap irregularities is surprisingly low.
OBJECTIVES: Lifestyles, including exercise behaviors, change continually over time. This study examined whether the clinical biomarkers (CBs) related to cardiometabolic diseases (CMDs) and their relationships differed with changes in exercise behavior. METHODS: The Ansan-Ansung cohort study (third to fifth phases; n=2,668) was used in the current study. Regular exercise behavior was investigated using a yes/no questionnaire. Changes in exercise behavior were classified into 4 groups: Y-N, N-Y, Y-Y, and N-N, with “Y” indicating that a participant regularly engaged in exercise at a given time point and “N” indicating that he or she did not. Fourteen CBs related to CMDs were used, and the associations between changes in exercise behavior and relative changes in CBs were examined. CB networks were constructed and topological comparisons were conducted.RESULTS: Y-N was associated with increases in fasting blood sugar and insulin levels in men, and increased total cholesterol and low-density lipoprotein cholesterol levels in women. Meanwhile, N-Y was inversely associated with body fat percentage, visceral fat percentage, fasting insulin, and triglyceride level. Waist circumference played a central role in most networks. In men, more edges were found in the N-Y and Y-Y groups than in the N-N and Y-N groups, whereas women in the N-Y and Y-Y groups had more edges than those in the N-N and Y-N groups. CONCLUSIONS: Consistent exercise or starting to engage in regular exercise had favorable effects on CBs related to CMDs, although their network patterns differed between the sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.