We present a novel approach to identify human microRNA (miRNA) regulatory modules (mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change data for sequence-specific targets. Bicluster targets were assessed using validated messenger RNA (mRNA) targets and exhibited on an average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of targets. We analyzed cancer-specific biclusters and found that the PI3K/Akt signaling pathway is strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and pathway activity by miR-29 was experimentally validated. In total, 29 898 biclusters for 459 human miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues, diseases, keywords and target genes.
Background
Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets.
Results
Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks.
Conclusions
Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Electronic supplementary material
The online version of this article (10.1186/s12864-019-5738-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.