Monoclonal antibodies and other biologic drugs play important roles in the treatment of various hematological malignancies and solid tumors. However, such drugs are intrinsically more expensive to develop than small molecules and their clinical benefits are often accompanied by challenges relating to affordability and access. Patent expiry for 'originator' biologics is providing opportunities for a new generation of biosimilar drugs, potentially capable of relieving pressure on healthcare budgets. This article discusses key characteristics of biosimilars, distinguishes them from generics and noncomparable biologics and outlines the robust regulatory requirements that must be followed to establish biosimilarity with a reference product. The path to approval is discussed with reference to the rituximab biosimilar CT-P10, the first licensed monoclonal antibody biosimilar cancer therapeutic.
Background: Origin recognition complex (ORC) binds to the replication origin for initiation of eukaryotic chromosome replication. Results: Phosphorylation of human ORC2 in the S phase dissociates ORC from chromatin and replication origins. Conclusion: Phosphorylation of ORC2 dissociates ORC from DNA and inhibits binding of ORC to newly replicated DNA. Significance: Phosphorylation of ORC2 controls chromatin binding of ORC.
Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.
Helical CT may assist in distinguishing mucinous from nonmucinous gastric carcinoma, primarily on the basis of enhancement pattern, predominant layer of the thickened wall, gross appearance, and presence of calcifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.