EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism.
The EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development in Arabidopsis (Arabidopsis thaliana). Loss-of-function emf mutants skip the vegetative phase, flower upon germination, and display pleiotropic phenotypes. EMF1 encodes a putative transcriptional regulator, while EMF2 encodes a Polycomb group (PcG) protein. PcG proteins form protein complexes that maintain gene silencing via histone modification. They are known to function as master regulators repressing multiple gene programs. Both EMF1 and EMF2 participate in PcG-mediated silencing of the flower homeotic genes AGAMOUS, PISTILLATA, and APETALA3. Full-genome expression pattern analysis of emf mutants showed that both EMF proteins regulate additional gene programs, including photosynthesis, seed development, hormone, stress, and cold signaling. Chromatin immunoprecipitation was carried out to investigate whether EMF regulates these genes directly. It was determined that EMF1 and EMF2 interact with genes encoding the transcription factors ABSCISIC ACID INSENSITIVE3, LONG VEGETATIVE PHASE1, and FLOWERING LOCUS C, which control seed development, stress and cold signaling, and flowering, respectively. Our results suggest that the two EMFs repress the regulatory genes of individual gene programs to effectively silence the genetic pathways necessary for vegetative development and stress response. A model of the regulatory network mediated by EMF is proposed.
Epigenetic regulation of gene expression is of fundamental importance for eukaryotic development. EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene that participates in Polycomb group-mediated transcriptional repression of target genes such as the flower MADS box genes AGAMOUS, APETALA3, and PISTILLATA. Here, we investigated the molecular mechanism underlying the curly leaf and early flowering phenotypes caused by reducing EMF1 activity in the leaf primordia of LFYasEMF1 transgenic plants and propose a combined effect of multiple flower MADS box gene activities on these phenotypes. ULTRAPETALA1 (ULT1) functions as a trithorax group factor that counteracts Polycomb group action in Arabidopsis (Arabidopsis thaliana). Removing ULT1 activity rescues both the abnormal developmental phenotypes and most of the misregulated gene expression of LFYasEMF1 plants. Reducing EMF1 activity increases salt tolerance, an effect that is diminished by introducing the ult1-3 mutation into the LFYasEMF1 background. EMF1 is required for trimethylating lysine-27 on histone 3 (H3K27me3), and ULT1 associates with ARABIDOPSIS TRITHORAX1 (ATX1) for trimethylating lysine-3 on histone 4 (H3K4me3) at flower MADS box gene loci. Reducing EMF1 activity decreases H3K27me3 marks and increases H3K4me3 marks on target gene loci. Removing ULT1 activity has the opposite effect on the two histone marks. Removing both gene activities restores the active and repressive marks to near wild-type levels. Thus, ULT1 acts as an antirepressor that counteracts EMF1 action through modulation of histone marks on target genes. Our analysis indicates that, instead of acting as off and on switches, EMF1 and ULT1 mediate histone mark deposition and modulate transcriptional activities of the target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.