Pinning single molecules at desired positions can provide opportunities to fabricate bottom-up designed molecular machines. Using the combined approach of scanning tunneling microscopy and density functional theory, we report on tip-induced anchoring of Niphthalocyanine molecules on an Au(111) substrate. We demonstrate that the tip-induced current leads to the dehydrogenation of a benzene-like ligand in the molecule, which subsequently creates chemical bonds between the molecule and the substrate. It is also found that the diffusivity of Ni-phthalocyanine molecules is dramatically reduced when the molecules are anchored on the Au adatoms produced by bias pulsing. The tip-induced molecular anchoring would be readily applicable to other functional molecules that contain similar ligands.
Understanding the origin of the magnetism of high temperature superconductors is crucial for establishing their unconventional pairing mechanism. Recently, theory predicts that FeSe is close to a magnetic quantum critical point, and thus weak perturbations such as impurities could induce local magnetic moments. To elucidate such quantum instability, we have employed scanning tunneling microscopy and spectroscopy. In particular, we have grown FeSe film on superconducting Pb(111) using molecular beam epitaxy and investigated magnetic excitation caused by impurities in the proximity-induced superconducting gap of FeSe. Our study provides a deep insight into the origin of the magnetic ordering of FeSe by showing the way local magnetic moments develop in response to impurities near the magnetic quantum critical point.
Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid, which spreads up to ~ 3 Å in the vacuum on the surface of electride crystal. An extremely high electron density and its weak hybridisation with buried atomic orbitals evidence the quantum and pure nature of electrons, that exhibit a polarized liquid phase as demonstrated by our spin-dependent measurement. Further, upon enhancing the electron correlation strength, the dynamics of quantum electrons changes to that of non-Fermi liquid along with an anomalous band deformation, suggestive of a transition to a hexatic liquid crystal phase. Our findings cultivate the frontier of quantum electron systems, and serve as a platform for exploring correlated electronic phases in a pure fashion.Electron phases, ranging from gas to liquid and solid, are foundational in physics, chemistry, and materials science. Understanding the characteristics of each electron phase, both
New pathways to controlling the morphology of superconducting vortex lattices�and their subsequent dynamics�are required to guide and scale vortex world-lines into a computing platform. We have found that the nematic twin boundaries align superconducting vortices in the adjacent terraces due to the incommensurate potential between vortices surrounding twin boundaries and those trapped within them. With the varying density and morphology of twin boundaries, the vortex lattice assumes several distinct structural phases, including square, regular, and irregular onedimensional lattices. Through concomitant analysis of vortex lattice models, we have inferred the characteristic energetics of the twin boundary potential and furthermore predicted the existence of geometric size effects as a function of increasing confinement by the twin boundaries. These findings extend the ideas of directed control over vortex lattices to intrinsic topological defects and their self-organized networks, which have direct implications for the future design and control of strain-based topological quantum computing architectures.
The nuclear motions coupled with electronic excitations of reactants play an essential role in electron-induced chemical reactions. Here, we study the vibrational− electronic (vibronic) coupling effects in the anchoring of Ni-phthalocyanine molecules (NiPCs) on Au(111) using scanning tunneling microscopy. The anchoring occurs through the dehydrogenation of a C−H bond in NiPC by tunneling electrons. By counting the number of anchored molecules, we measure the reaction rate as a function of the bias voltage. We find an unexpected dip feature in the reaction rate near the bias voltage of 4.8 V.To understand this, we employ density functional theory calculations to study atomic force exerted on a NiPC by Franck−Condon-like excitations. We find the molecule anchoring is enhanced when the C−H bonds are stretched by the induced force, which is lacking for the bias voltage near 4.8 V and thus responsible for the anomalous dip in the reaction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.