Previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients’ spatial memory deficits. More recently, patients who had recovered from unilateral vestibular neuritis have been reported to exhibit a significant atrophy of the left posterior hippocampus. Therefore, we investigated whether bilateral vestibular deafferentation (BVD) would result in a decrease in neuronal number or volume in the rat hippocampus, using stereological methods. At 16 months post-BVD, we found no significant differences in hippocampal neuronal number or volume compared to sham controls, despite the fact that these animals exhibited severe spatial memory deficits. By contrast, using bromodeoxyuridine (BrdU) as a marker of cell proliferation, we found that the number of BrdU-labeled cells significantly increased in the dentate gyrus of the hippocampus between 48 h and 1 week following BVD. Although a substantial proportion of these cells survived for up to 1 month, the survival rate was significantly lower in BVD animals when compared with that in sham animals. These results suggest a dissociation between the effects of BVD on spatial memory and hippocampal structure in rats and humans, which cannot be explained by an injury-induced increase in cell proliferation.
Ampakines are a class of putative nootropic drug designed to positively modulate the AMPA receptor and have been investigated as a potential treatment for cognitive disorders such as Alzheimer's Disease. Nonetheless, some ampakines such as CX717 have been incompletely characterized in behavioural pharmacological studies. Therefore, in this study, we attempted to further characterize the effects of the ampakine, CX717 (20 mg/kg s.c), on the performance of rats in a 5 choice serial reaction time (5CSRTT) and object recognition memory task, using rats with cognitive deficits caused by bilateral vestibular deafferentation (BVD) as a model. In the 5CSRTT, when the stimulus duration was varied from 5 to 2 sec, the number of incorrect responses was significantly greater for the BVD group compared to sham controls, but significantly less for the CX717 groups, with no significant interaction. With changes in inter-trial interval (ITI), there was a significant effect of surgery/drug and a significant effect of ITI on premature responses, and the BVD group treated with CX717 showed significantly fewer premature responses than the other groups. In the object recognition memory task, CX717 significantly reduced total exploration time and the exploration towards the novel object in both sham and BVD animals. These results suggest that CX717 can reduce the number of incorrect responses in both sham and BVD rats and enhance inhibitory control specifically in BVD rats, in the 5CSRTT. On the other hand, CX717 produced a detrimental effect in the object recognition memory task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.