Development of artificial matrices for tissue engineering is a crucial area of research in the field of regenerative medicine. Successful tissue scaffolds, in analogy with the natural mammalian extracellular matrix (ECM), are multi-component, fibrous, and on the nanoscale. In addition, to this key morphology, artificial scaffolds must have mechanical, chemical, surface, and electrical properties that match the ECM or basement membrane of the specific tissue desired. In particular, these material properties may vary significantly for the four primary tissues in the body: nerve, muscle, epithelial, and connective. In order to address this complex array of attributes with a polymeric material, a nanocomposite approach, employing a blend of materials, addition of a particle to enhance particular properties, or a surface treatment, is likely to be required. In this review, we examine nanocomposite approaches to address these diverse needs as a function of tissue type. The review is intended as a bridge between material scientists and biomedical researchers to give basic background information on tissue biology to the former, and on material processing approaches to the latter, in a general manner, and specifically review fibrous nanocomposite materials that have previously been used for cell studies, either in vivo or in vitro .
Coir fibres, a byproduct of the coconut industry, have high performance qualities but are difficult to process by conventional textile methods. The purpose of the research is to combine the processibility of hemp and flax with the high-performance properties of coir to create a composite product worthy of industrial applications. The evaluation of coir fibre-reinforced composites focuses on the processibility of the coir fibre into a nonwoven, how well it interfaces with polylactic acid and an analysis of how the mechanical properties of the final product change when mixing coir with hemp and flax. The results show that the hybrid samples outperformed most of the researched values for coir composites, despite the reduced properties of control samples as in comparable research. Adding just 10% of either flax or hemp dramatically increased the mechanical properties compared to the pure coir–polylactic acid composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.