Numerical calculations were performed to examine the mechanisms for generation of a retro-reflected wave from the interaction of an evanescent wave with a sub-wavelength structure using the finitedifference time-domain (FDTD) method. The simulation shows that an evanescent wave is reflected from the structure at the interface between a high index dielectric material and a low index material. The reflected evanescent wave couples into the upper medium and radiates its energy forming a retro-reflected wave, which appears as a sharp peak near the edge of the structure when imaging the structure in hyper-numerical-aperture solid immersion microscopy. We propose a simple theory and verify it through FDTD calculation under various circumstances in order to explain peculiar features of this phenomenon. Furthermore, we suggest a way to control the reflection of the evanescent wave by taking advantage of the interference of the evanescent wave inside the structure.
There is significant interest in biodegradable and transparent UV protection films from renewable resources for many different applications. Herein, the preparation and characterization of semitransparent flexible cellulose films containing low amounts of covalently bonded lignin with UV-blocking properties are described. Azide modified cellulose dissolved in dimethylacetamide/lithium chloride (DMAc/LiCl) was reacted with propargylated lignin to produce 0.5%, 1%, and 2% by weight lignin containing materials. Cellulose-lignin films were prepared by regeneration in acetone. These covalently bonded cellulose-lignin films were homogeneous, unlike the simple blends of cellulose and lignin. Prepared films showed high UV protection ability. Cellulose film containing 2% lignin showed 100% protection of UV-B (280–320 nm) and more than 90% of UV-A (320–400 nm). The UV protection of prepared films was persistent when exposed to thermal treatment at 120 °C and UV irradiation. Thermogravimetric analysis of the films showed minimal mass loss up to 275 °C. The tensile strength of the neat cellulose film was around 120 MPa with about a 10% strain to break. Treated cellulose films with 2% lignin showed lower tensile strength (90 MPa). The described methods demonstrate a straightforward procedure to produce renewable based cellulose-lignin UV-light-blocking films.
Self-cleaning surface is potentially a very useful addition for many commercial products due to economic, aesthetic, and environmental reasons. Super-hydrophobic selfcleaning, also called Lotus effect, utilizes right combination of surface chemistry and roughness to force water droplets to form high contact angle on a surface, easily roll off a surface and pick up dirt particles on its way. Electrospinning is a promising technique for creation of superhydrophobic self-cleaning surfaces owing to a wide set of parameters that allow effectively controlling roughness of resulted webs. This article gives a brief introduction to the theory of super-hydrophobic selfcleaning and basic principles of the electrospinning process and reviews the scientific literature where electrospinning was used to create superhydrophobic surfaces. The article reviewed are categorized into several groups and their results are compared in terms of superhydrophobic properties. Several issues with current state of the art and highlights of important areas for future research are discussed in the conclusion. V C 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 2012
The mechanical properties of multiwall carbon nanotube (MWNT)/poly(methyl methacrylate) (PMMA) nanocomposites were studied as a function of nanotube orientation, length, concentration, and type. Orientation and dispersion were assessed by electron microscopy. A processing parameter study revealed the robust nature of fabricating nanotube/PMMA nanocomposites. An optimal set of extrusion conditions was found for minimizing the aggregate size in single-wall carbon nanotube (SWNT)/ PMMA nanocomposites; this set was also used for the fabrication of the MWNT/PMMA composites. Good dispersion was achieved for MWNTs in PMMA at 0.1-10 wt % loading levels (with the best dispersions at the lower loading levels). The orientation of MWNTs in PMMA proved to be the only way to substantially toughen the nanocomposite. A level of 1 wt % MWNTs in PMMA (oriented nanocomposite) exhibited the largest increase in tensile toughness with a 170% improvement over oriented PMMA. Increases in the modulus and yield strength were not nearly as pronounced (and occurred only at the highest loading of MWNTs, which was 10 wt %) with increases of 38 and 25%, respectively. A failure mechanism was proposed in which orientation of the MWNTs (normal to the direction of craze propagation and crack development) enabled them to toughen the brittle PMMA by bridging cracks that developed (via craze precursors) during the tensile test. None of the nanotube/PMMA composites showed mechanical properties close to the values expected from simple rule of mixture and orientation considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.