Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor-4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.
J. Neurochem. (2010) 113, 637–648. Abstract Traumatic brain injury is a devastating neurological injury associated with significant morbidity and mortality. Medical therapies to limit cerebral edema, a cause of increased intracranial hypertension and poor clinical outcome, are largely ineffective, emphasizing the need for novel therapeutic approaches. In the present study, pre‐treatment with curcumin (75, 150 mg/kg) or 30 min post‐treatment with 300 mg/kg significantly reduced brain water content and improved neurological outcome following a moderate controlled cortical impact in mice. The protective effect of curcumin was associated with a significant attenuation in the acute pericontusional expression of interleukin‐1β, a pro‐inflammatory cytokine, after injury. Curcumin also reversed the induction of aquaporin‐4, an astrocytic water channel implicated in the development of cellular edema following head trauma. Notably, curcumin blocked IL‐1β‐induced aquaporin‐4 expression in cultured astrocytes, an effect mediated, at least in part, by reduced activation of the p50 and p65 subunits of nuclear factor κB. Consistent with this notion, curcumin preferentially attenuated phosphorylated p65 immunoreactivity in pericontusional astrocytes and decreased the expression of glial fibrillary acidic protein, a reactive astrocyte marker. As a whole, these data suggest clinically achievable concentrations of curcumin reduce glial activation and cerebral edema following neurotrauma, a finding which warrants further investigation.
BackgroundIntracerebral hemorrhage (ICH) is a potentially fatal stroke subtype accounting for 10–15 % of all strokes. Despite neurosurgical intervention and supportive care, the 30-day mortality rate remains 30–50 % with ICH survivors frequently displaying neurological impairment and requiring long-term assisted care. Although accumulating evidence demonstrates the role of neuroinflammation in secondary brain injury and delayed fatality after ICH, the molecular regulators of neuroinflammation remain poorly defined after ICH.MethodsIn the present study, ICH was induced in CD1 male mice by collagenase injection method and given the emerging role of TSPO (18-kDa translocator protein) in neuroinflammation, immunofluorescence staining of brain sections was performed to characterize the temporal expression pattern and cellular and subcellular localization of TSPO after ICH. Further, both genetic and pharmacological studies were employed to assess the functional role of TSPO in neuroinflammation.ResultsThe expression of TSPO was found to be increased in the peri-hematomal brain region 1 to 7 days post-injury, peaking on day 3 to day 5 in comparison to sham. Further, the TSPO expression was mostly observed in microglia/macrophages, the inflammatory cells of the central nervous system, suggesting an unexplored role of TSPO in neuroinflammatory responses after ICH. Further, the subcellular localization studies revealed prominent perinuclear expression of TSPO after ICH. Moreover, both genetic and pharmacological studies revealed a regulatory role of TSPO in the release of pro-inflammatory cytokines in a macrophage cell line, RAW 264.7.ConclusionsAltogether, the data suggest that TSPO induction after ICH could be an intrinsic mechanism to prevent an exacerbated inflammatory response and raise the possibility of targeting TSPO for the attenuation of secondary brain injury after ICH.
Objective Traumatic brain injury (TBI) induces significant neurological damage, including deficits in learning and memory which contribute to a poor clinical prognosis. Treatment options to limit cognitive decline and promote neurological recovery are lacking, in part, due to a poor understanding of the secondary/delayed processes which contribute to brain injury. In the present study, we characterized the temporal and spatial changes in the expression of PSD-95, a key scaffolding protein implicated in excitatory synaptic signaling, following controlled cortical impact in mice. Neurological injury, as assessed by the open field activity test and the novel object recognition test, were compared with changes in PSD-95 expression. Methods Adult male CD-1 mice were subjected to controlled cortical impact to simulate a moderate traumatic brain injury in humans. The spatial and temporal expression of PSD-95 was analyzed in the cerebral cortex and hippocampus at various time points following injury. Neurological assessments were performed to compare changes in PSD-95 with cognitive deficits. Results A significant decrease in PSD-95 expression was observed in the ipsilateral hippocampus beginning at day 7 post-injury. The loss of PSD-95 corresponded with a concomitant reduction in immunoreactivity for NeuN, a neuronal-specific marker. Aside from the contused cortex, significant loss of PSD-95 immunoreactivity was not observed in the cerebral cortex. The delayed loss of hippocampal PSD-95 directly correlated with the onset of behavioral deficits, suggesting a possible causative role for PSD-95 in behavioral abnormalities following a head trauma. Conclusion Delayed loss of hippocampal synapses was observed following head trauma in mice. These data may suggest a cellular mechanism to explain the delayed learning and memory deficits in humans and provide a potential framework for further testing to implicate PSD-95 as a clinically-relevant therapeutic target.
TSPO (18 kDa translocator protein) was identified decades ago in a search for peripheral tissue binding sites for benzodiazepines, and was formerly called the peripheral benzodiazepine receptor. TSPO is a conserved protein throughout evolution and it is implicated in the regulation of many cellular processes, including inflammatory responses, oxidative stress, and mitochondrial homeostasis. TSPO, apart from its broad expression in peripheral tissues, is highly expressed in neuroinflammatory cells, such as activated microglia. In addition, emerging studies employing the ligands of TSPO suggest that TSPO plays an important role in neuropathological settings as a biomarker and therapeutic target. However, the precise molecular function of this protein in normal physiology and neuropathology remains enigmatic. This review provides an overview of recent advances in our understanding of this multifaceted molecule and identifies the knowledge gap in the field for future functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.