Fast charging promotes Li dendrite formation and its growth on graphite anodes, which affects cell performance in Li-ion batteries (LIBs). This work reports the formation of a robust SEI layer by introducing a KPF6 inorganic additive into the electrolyte. An optimal concentration of 0.001 M KPF6 effectively inhibits the growth of Li dendrites at 2C charging rates, compared with a commercial electrolyte. Electrolytes containing a KPF6 additive are shown here to deliver dual effects to mitigate the growth of dendrites. A thin LiF-rich SEI layer is formed on graphite, which blocks the electron leakage pathways. Additionally, K+ resides at defect sites (such as particle boundaries) due to its faster diffusion rate and blocks the incoming Li+ and restricts the growth of Li dendrites. The electrolyte with optimum concentration of KPF6, i.e., 0.001 M, effectively directs Li+ transport through the thin, durable, and low resistance LiF-rich SEI layer. This has implications for fast charging through optimization of the electrode/electrolyte interphase by controlling additive concentrations.
Silicon anodes require polymer binder systems that are both mechanically robust and electrochemically stable, to accommodate the dramatic volume expansion experienced during cycling operation. Herein, we report the use of a poly(acrylic acid)-grafted styrene−butadiene rubber (PAA-g-SBR) with 80% partially neutralized Na-PAA as the binder system for silicongraphite anodes. The PAA-g-SBR graft copolymer was synthesized by grafting tert-butyl acrylate onto SBR and treating the intermediate with H 3 PO 4 . The PAA-g-SBR/Na-PAA binder system was found to provide superior electrochemical performances to that of a Na-PAA/SBR system. The Na-PAA/PAA-g-SBR system had a stable capacity retention of 673 mAh g −1 for 130 cycles, while the capacity retention of the Na-PAA/SBR system was found to decline immediately. The Na-PAA/PAA-g-SBR system also displayed more preferable mechanical properties, with a lower Young's modulus value and a larger strain at failure compared to that of the Na-PAA/SBR system. Overall, these findings indicate a promising and robust polymer binder system for the application of silicon anodes in the next generation of lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.