A low band gap quinolizino acridine based molecule was designed and synthesized as new hole transporting material for organic-inorganic hybrid lead halide perovskite solar cells. The functionalized quinolizino acridine compound showed an effective hole mobility in the same range of the state-of-the-art spiro-MeOTAD and an appropriate oxidation potential of 5.23 eV vs the vacuum level. The device based on this new hole transporting material achieved high power conversion efficiency of 12.8% under the illumination of 98.8 mW cm(-2), which was better than the well-known spiro-MeOTAD under the same conditions. Moreover, this molecule could work alone without any additives, thus making it to be a promising candidate for solid-state photovoltaic application.
Dopant-free HTM KR321 showed highly ordered characteristic face-on organization leading to increased vertical charge transport and PCE over 19% in PSC with improved stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.