Owing to increasing global temperatures, heat stress is a major problem affecting dairy cows, and abnormal metabolic responses during heat stress likely influence dairy cow immunity. However, the mechanism of this crosstalk between metabolism and immunity during heat stress remains unclear. We used two representative dairy cow breeds, Holstein and Jersey, with distinct heat-resistance characteristics. To understand metabolic and immune responses to seasonal changes, normal environmental and high-heat environmental conditions, we assessed blood metabolites and immune cell populations. In biochemistry analysis from sera, we found that variety blood metabolites were decreased in both Holstein and Jersey cows by heat stress. We assessed changes in immune cell populations in peripheral blood mononuclear cells (PBMCs) using flow cytometry. There were breed-specific differences in immune-cell population changes. Heat stress only increased the proportion of B cells (CD4–CD21+) and heat stress tended to decrease the proportion of monocytes (CD11b+CD172a+) in Holstein cows. Our findings expand the understanding of the common and specific changes in metabolism and immune response of two dairy cow breeds under heat stress conditions.
Growing evidence suggests that there is an essential link between the gut and lungs. Asthma is a common chronic inflammatory disease and is considered a heterogeneous disease. While it has been documented that eosinophilic asthma affects gut immunity and the microbiome, the effect of other types of asthma on the gut environment has not been examined. In this study, we utilized an OVA/poly I:C-induced mixed granulocytic asthma model and found increased Tregs without significant changes in other inflammatory cells in the colon. Interestingly, an altered gut microbiome has been observed in a mixed granulocytic asthma model. We observed an increase in the relative abundance of the Faecalibaculum genus and Erysipelotrichaceae family, with a concomitant decrease in the relative abundance of the genera Candidatus arthromitus and Streptococcus. The altered gut microbiome leads to changes in the abundance of genes associated with microbial metabolism, such as glycolysis. We found that mixed granulocytic asthma mainly affects the gut microbial composition and metabolism, which may have important implications in the severity and development of asthma and gut immune homeostasis. This suggests that altered gut microbial metabolism may be a potential therapeutic target for patients with mixed granulocytic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.