Diffusiophoresis (DP) is described as typically being divided into chemiphoresis (CP) and electrophoresis (EP), and the related theory is well-established. However, not only the individual effect of CP and EP but also the size dependency on the resulting DP of colloidal particles has not yet been comprehensively demonstrated in an experimental manner. In this paper, we present a dynamic transport control mechanism for colloidal particles by developing a micro-/nanofluidic DP platform (MNDP). We demonstrate that the MNDP can generate transient and/or steady-state concentration gradients, making it possible to control the direction and rate of transport of colloidal particles through the individual manipulation of CP and EP by simply and rapidly switching solutions. In addition, the MNDP allows the size-dependent separation as well as fractionation of submicron particles through the individual manipulation of CP and EP, thus empirically validating the classic theoretical model for DP under the influence of electrical double layer (EDL) thickness. Furthermore, we provide theoretical analysis and simulation results that will enable the development of a versatile separation and/or fractionation technique for various colloidal particles, including biosamples, according to their size or electrical feature.
Liquid foam consists of liquid film networks. The films can be thinned to the nanoscale via evaporation and have potential in bottom-up material structuring applications. However, their use has been limited due to their dynamic fluidity, complex topological changes, and physical characteristics of the closed system. Here, we present a simple and versatile microfluidic approach for controlling two-dimensional liquid foam, designing not only evaporative microholes for directed drainage to generate desired film networks without topological changes for the first time, but also microposts to pin the generated films at set positions. Patterning materials in liquid is achievable using the thin films as nanoscale molds, which has additional potential through repeatable patterning on a substrate and combination with a lithographic technique. By enabling direct-writable multi-integrated patterning of various heterogeneous materials in two-dimensional or three-dimensional networked nanostructures, this technique provides novel means of nanofabrication superior to both lithographic and bottom-up state-of-the-art techniques.
Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor (AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of−1.5, a robust mechanical property (0.6 cN/dtex), and a fast train-resistance responsiveness (0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.
Understanding and controlling the transport mechanisms of small molecules at the micro/nanoscales is vital because they provide a working principle for a variety of practical micro/nanofluidic applications. However, most precedent mechanisms still have remaining obstacles such as complicated fabrication processes, limitations of materials, and undesired damage on samples. Herein, we present the evaporation-driven transport-control of small molecules in gas-permeable and low-aspect ratio nanoslits, wherein both the diffusive and advective mass transports of solutes are affected by solvent evaporation through the nanoslit walls. The effect of the evaporation flux on the mass transport of small molecules in various nanoslit-integrated micro/nanofluidic devices is characterized, and dynamic transport along the nanoslit is investigated by conducting numerical simulations using the advection-diffusion equation. We further demonstrate that evaporation-driven, nanoslit-based transport-control can be easily applied to a micro/nanofluidic channel network in an independent and addressable array, offering a unique working principle for micro/nanofluidic applications and components such as molecule-valves, -concentrators, -pumps, and -filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.