This paper presents a tradeoff between shifting design and controlling sampling uncertainty in system reliability-based design optimization (RBDO) using the Bayesian network. The sampling uncertainty is caused by a finite number of samples used in calculating the reliability of a component, and it propagates to the system reliability. A conservative failure probability is utilized to consider sampling uncertainty. In this paper, the sensitivity of a conservative system failure probability is derived with respect to the design change and the number of samples in a component using Bayesian network along with global sensitivity analysis (GSA). In the sensitivity analysis, GSA is used for local sensitivity calculation. The numerical results show that sampling uncertainty can significantly affect the conservative system reliability and needs to be controlled to achieve the desired level of system reliability. Numerical examples show that both shifting design and reducing sampling uncertainty are crucial in the system RBDO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.