Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.
While the antibacterial properties of silver nanoparticles (AgNPs) have been demonstrated across a spectrum of bacterial pathogens, the effects of AgNPs on the beneficial bacteria are less clear. To address this issue, we compared the antibacterial activity of AgNPs against two beneficial lactobacilli ( Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei) and two common opportunistic pathogens ( Escherichia coli and Staphylococcus aureus). Our results demonstrate that those lactobacilli are highly susceptible to AgNPs, while the opportunistic pathogens are not. Acidic environment caused by the lactobacilli is associated with the bactericidal effects of AgNPs. Our mechanistic study suggests that the acidic growth environment of lactobacilli promotes AgNP dissolution and hydroxyl radical (•OH) overproduction. Furthermore, increases in silver ions (Ag) and •OH deplete the glutathione pool inside the cell, which is associated with the increase in cellular reactive oxygen species (ROS). High levels of ROS may further induce DNA damage and lead to cell death. When E. coli and S. aureus are placed in a similar acidic environment, they also become more susceptible to AgNPs. This study provides a mechanistic description of a pH-Ag-•OH bactericidal pathway and will contribute to the responsible development of products containing AgNPs.
Molybdenum disulfide (MoS 2 ) nanosheets have received considerable interest due to their superior physicochemical performances to graphene nanosheets. As the lateral size and layer thickness decrease, the formed MoS 2 quantum dots (QDs) show more promise as photocatalysts, endowing them with potential antimicrobial properties under environmental conditions. However, studies on the antibacterial photodynamic therapy of MoS 2 QDs have rarely been reported. Here, we show that MoS 2 QDs more effectively promote the creation and separation of electron−hole pair than MoS 2 nanosheets, resulting in the formation of multiple reactive oxygen species (ROS) under simulated solar light irradiation. As a result, photoexcited MoS 2 QDs show remarkably enhanced antibacterial activity, and the ROS-mediated oxidative stress plays a dominant role in the antibacterial mechanism. The in vivo experiments showed that MoS 2 QDs are efficacious in wound healing under simulated solar light irradiation and exert protective effects on normal tissues, suggesting good biocompatibility properties. Our findings provide a full description of the photochemical behavior of MoS 2 QDs and the resulting antibacterial activity, which might advance the development of MoS 2 -based nanomaterials as photodynamic antibacterial agents under environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.