In recent times, the utilization of cloud computing VMs is extremely enhanced in our day-to-day life due to the ample utilization of digital applications, network appliances, portable gadgets, and information devices etc. In this cloud computing VMs numerous different schemes can be implemented like multimedia-signal-processing-methods. Thus, efficient performance of these cloud-computing VMs becomes an obligatory constraint, precisely for these multimedia-signal-processing-methods. However, large amount of energy consumption and reduction in efficiency of these cloud-computing VMs are the key issues faced by different cloud computing organizations. Therefore, here, we have introduced a dynamic voltage and frequency scaling (DVFS) based adaptive cloud resource re-configurability (ACRR) technique for cloud computing devices, which efficiently reduces energy consumption, as well as perform operations in very less time. We have demonstrated an efficient resource allocation and utilization technique to optimize by reducing different costs of the model. We have also demonstrated efficient energy optimization techniques by reducing task loads. Our experimental outcomes shows the superiority of our proposed model ACRR in terms of average run time, power consumption and average power required than any other state-of-art techniques.
Recently, the wide adoption of WSNs (Wireless-Sensor-Networks) is been seen for provision non-real time and real-time application services such as intelligent transportation and health care monitoring, intelligent transportation etc. Provisioning these services requires energy-efficient WSN. The clustering technique is an efficient mechanism that plays a main role in reducing the energy consumption of WSN. However, the existing model is designed considering reducing energy- consumption of the sensor-device for the homogenous network. However, it incurs energy-overhead (EO) between cluster-head (CH). Further, maximizing coverage time is not considered by the existing clustering approach considering heterogeneous networks affecting lifetime performance. In order to overcome these research challenges, this work presents an energy efficient clustering and routing optimization (EECRO) model adopting cross-layer design for heterogeneous networks. The EECRO uses channel gain information from the physical layer and TDMA based communication is adopted for communication among both intra-cluster and inter-cluster communication. Further, clustering and routing optimization are presented to bring a good trade-off among minimizing the energy of CH, enhancing coverage time and maximizing the lifetime of sensor-network (SN). The experiments are conducted to estimate the performance of EECRO over the existing model. The significant-performance is attained by EECRO over the existing model in terms of minimizing routing and communication overhead and maximizing the lifetime of WSNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.