Over the last twenty years, the open source community has provided more and more software on which the world's High Performance Computing (HPC) systems depend for performance and productivity. The community has invested millions of dollars and years of effort to build key components. But although the investments in these separate software elements have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning, coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both within individual PetaScale systems and between different systems. It seems clear that this completely uncoordinated development model will not provide the software needed to support the unprecedented parallelism required for peta/exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such as transactional memory, speculative execution, and GPUs. This report describes the work of the community to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated International Exascale Software Project.
Leachate produced by municipal solid waste dumping site near the metropolitan city of Pune, India was examined for its pollution potential and impact on surrounding shallow basaltic aquifers. Twenty-eight physico-chemical parameters during post-and pre-monsoon seasons (Nov 2006 and May 2007) were determined to assess the seasonal variation in the leachate pollution index (LPI) as well as in the groundwater quality. The leachate demonstrated higher LPI value during pre-monsoon, comparable to those at other metropolises outside India. Potentially toxic leachates derived from the dumping site have largely influenced the adjoining basaltic aquifers through two different modes of transport. Despite high contents of heavy metals (Al, Cd, Cr, Cu,
Watersheds from semiarid zones are sensitive to land degradation processes wherein the morphometric investigation is an important aspect to unwrap the susceptible areas. Hence it is a prerequisite for the assessment of erosional pattern of the watershed. Thus, based on the response to erosional processes, prioritization task has been undertaken for fourteen sub-watersheds from basaltic region of Western Ghats of India. A morphometry-based framework using weighted sum analysis (WSA) coupled with the remote sensing data, field data and topographical maps were generated on geographical information system (GIS) platform to estimate the soil erosion susceptibility. The study also evaluates the performance of this new methodology by considering the sediment production rate (SPR) of these sub-watersheds. The resultant WSA-SPR model has prioritized the study area into high, moderate low and very low categories. The high and moderate priority areas lie in the proximity of outlet, upper elevated and undulating terrain of the watershed. It represents 41.38% of the total area covering SW1, 3, 13 and 14 sub-watersheds. This study proposes a useful tool to define areas for planning the strategies to control soil erosion and promote soil conservation.
ARTICLE HISTORY
Semi-arid Karha basin from Deccan Volcanic Province, India was investigated for inter-annual variability of urolithiasis epidemic. The number of reported urolith patient, weather station data and groundwater quality results was used to assess impact of geoenvironment on urolithiasis. Data of 7081 urolith patient were processed for epidemiological study. Gender class, age group, year-wise cases and urolith type were studied in epidemiology. Rainfall, temperature, pan evaporation and sunshine hours were used to correlate urolithiasis. Further, average values of groundwater parameters were correlated with the number of urolith episodes. A total of 52 urolith samples were collected from hospitals and analysed using FTIR technique to identify dominant urolith type in study area. Result shows that male population is more prone, age group of 20-40 is more susceptible and calcium oxalate uroliths are dominant in study area. Year-wise distribution revealed that there is steady increase in urolithiasis with inflation in drought years. In climatic parameters, hot days are significantly correlated with urolithiasis. In groundwater quality, EC, Na and F are convincingly correlated with urolith patients, which concludes the strong relation between geo-environment and urolithiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.