Since end-to-end deep learning models have started to replace traditional pipeline architectures of question answering systems, features such as expected answer types which are based on the question semantics are seldom used explicitly in the models. In this paper, we propose a convolution neural network model to predict these answer types based on question words and a recurrent neural network model to find sentence similarity scores between question and answer sentences. The proposed model outperforms the current state of the art results on an answer sentence selection task in open domain question answering by 1.88% on MAP and 2.96% on MRR scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.