BackgroundAccumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE) and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube.MethodsComparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI) isolated by laser capture micro-dissection (LCM) from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms.ResultsConsistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development.ConclusionsOur results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.
The ADAM (a disintegrin and metalloprotease) family is a group of transmembrane proteins containing cell adhesive and proteolytic functional domains. Microarray analysis detected elevated ADAM9 during the transition of human LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent and metastatic state. Using a prostate tissue array (N = 200), the levels of ADAM9 protein expression were also elevated in malignant as compared with benign prostate tissues. ADAM9 protein expression was found in 43% of benign glands with light staining and 87% of malignant glands with increasing intensity of staining. We found that ADAM9 mRNA and protein expressions were elevated on exposure of human prostate cancer cells to stress conditions such as cell crowding, hypoxia, and hydrogen peroxide. We uncovered an ADAM9-like protein, which is predominantly induced together with the ADAM9 protein by a brief exposure of prostate cancer cells to hydrogen peroxide. Induction of ADAM9 protein in LNCaP or C4-2 cells can be completely abrogated by the administration of an antioxidant, ebselen, or genetic transfer of a hydrogen peroxide degradative enzyme, catalase, suggesting that reactive oxygen species (ROS) are a common mediator. The induction of ADAM9 by stress can be inhibited by both actinomycin D and cycloheximide through increased gene transcription and protein synthesis. In conclusion, intracellular ROS and/or hydrogen peroxide, generated by cell stress, regulate ADAM9 expression. ADAM9 could be responsible for supporting prostate cancer cell survival and progression. By decreasing ADAM9 expression, we observed apoptotic cell death in prostate cancer cells.
Recently, we have proposed a model for the development of ovarian surface epithelial tumors. In this model, all histologic types of surface epithelial tumors are divided into 2 categories designated type I and type II which correspond to 2 pathways of tumorigenesis. Type I tumors include low-grade serous carcinoma, mucinous carcinoma, endometrioid carcinoma, malignant Brenner tumor, and clear cell carcinoma which develop slowly in a stepwise fashion from well-recognized precursors, namely atypical proliferative (borderline) tumors. Type II tumors are high-grade, rapidly growing tumors that typically have spread beyond the ovaries at presentation. They include high-grade serous carcinoma ("moderately" and "poorly" differentiated), malignant mixed mesodermal tumors (carcinosarcomas), and undifferentiated carcinoma. These tumors are rarely associated with morphologically recognizable precursor lesions and it has been proposed that they develop "de novo" from ovarian inclusion cysts. This model implies that the pathogenesis of type I and type II tumors are separate and independent but it is not clear whether some type II tumors develop from type I tumors. In this study, we attempted to address this issue by determining the clonality of 6 cases of high-grade serous carcinomas that were closely associated with atypical proliferative serous (borderline) tumors and invasive low-grade micropapillary serous carcinomas. We reviewed 210 ovarian serous tumors from the surgical pathology files of the Johns Hopkins Hospital and identified 3 high-grade serous carcinoma that were directly associated with atypical proliferative serous (borderline) tumors and 3 that were associated with invasive low-grade micropapillary serous carcinomas. A morphologic continuum between the high-grade carcinoma and the low-grade tumors was observed in 4 cases whereas in the remaining 2 cases the high-grade and low-grade components were separate. Mutational analyses for KRAS, BRAF, and p53 genes were performed on microdissected samples from the high-grade and low-grade tumor areas for each case. All 6 tumors demonstrated wild-type BRAF and p53 genes. Only 2 of the 6 cases were informative from a molecular genetic standpoint. In those 2 cases we found the same mutations of KRAS in both the atypical proliferative serous (borderline) tumor and the high-grade serous carcinoma component of the tumor, indicating a clonal relationship. The above results suggest that the majority of high-grade and low-grade carcinomas develop independently but in rare cases, a high-grade serous carcinoma may arise from an atypical proliferative serous (borderline) tumor.
Thyroid nodules diagnosed as follicular neoplasm on fine‐needle aspiration biopsy (FNAB) may represent hyperplastic/adenomatous nodules, follicular adenoma or carcinoma, and follicular variants of papillary thyroid carcinoma (FVPTC) on histologic follow‐up. In our laboratory, we attempted to identify a subset of cases which showed cellular specimens with focal features (nuclear chromatin clearing, membrane thickening, and rare grooves) suspicious for the follicular variant of papillary thyroid carcinoma. These cases are reported as follicular‐derived neoplasms with nuclear features suspicious for FVPTC to distinguish them from those diagnosed as follicular neoplasm. This study documents our experience with 52 cases so diagnosed and followed prospectively with histologic follow‐up. A neoplastic nodule was confirmed in 45/52 cases (86%), of which 40 were malignant (77%). FVPTC was identified in 35/52 cases (67%). Four cases were usual papillary carcinoma, 3 were follicular adenoma, 2 were Hürthle‐cell adenoma, and 1 was insular carcinoma. In 7 cases, the subsequent histologic findings were nonneoplastic (5 hyperplastic nodules and 2 colloid nodules). Our prospective study shows that in cellular smears from thyroid nodules, a careful search for the nuclear features of papillary carcinoma should be performed, and it is appropriate to diagnose cases as suspicious for FVPTC if the nuclear features of papillary carcinoma are focal. The surgical management of this group may include an intraoperative confirmation of cytologic diagnosis by scrape preparation and/or frozen section in order to avoid a second surgical intervention for completion thyroidectomy. Diagn. Cytopathol. 2000; 23:380–385. © 2000 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.