a) SfM point cloud (top view) (b) Projected 3D points (c) Synthesized Image (d) Original Image Figure 1: SYNTHESIZING IMAGERY FROM A SFM POINT CLOUD: From left to right: (a) Top view of a SfM reconstruction of an indoor scene, (b) 3D points projected into a viewpoint associated with a source image, (c) the image reconstructed using our technique, and (d) the source image. The reconstructed image is very detailed and closely resembles the source image. AbstractMany 3D vision systems localize cameras within a scene using 3D point clouds. Such point clouds are often obtained using structure from motion (SfM), after which the images are discarded to preserve privacy. In this paper, we show, for the first time, that such point clouds retain enough information to reveal scene appearance and compromise privacy. We present a privacy attack that reconstructs color images of the scene from the point cloud. Our method is based on a cascaded U-Net that takes as input, a 2D multichannel image of the points rendered from a specific viewpoint containing point depth and optionally color and SIFT descriptors and outputs a color image of the scene from that viewpoint. Unlike previous feature inversion methods [46,9], we deal with highly sparse and irregular 2D point distributions and inputs where many point attributes are missing, namely keypoint orientation and scale, the descriptor image source and the 3D point visibility. We evaluate our attack algorithm on public datasets [24,39] and analyze the significance of the point cloud attributes. Finally, we show that novel views can also be generated thereby enabling compelling virtual tours of the underlying scene.
Virtually all structured light methods assume that the scene and the sources are immersed in pure air and that light is neither scattered nor absorbed. Recently, however, structured lighting has found growing application in underwater and aerial imaging, where scattering effects cannot be ignored. In this paper, we present a comprehensive analysis of two representative methods -light stripe range scanning and photometric stereo -in the presence of scattering. For both methods, we derive physical models for the appearances of a surface immersed in a scattering medium. Based on these models, we present results on (a) the condition for object detectability in light striping and (b) the number of sources required for photometric stereo. In both cases, we demonstrate that while traditional methods fail when scattering is significant, our methods accurately recover the scene (depths, normals, albedos) as well as the properties of the medium. These results are in turn used to restore the appearances of scenes as if they were captured in clear air. Although we have focused on light striping and photometric stereo, our approach can also be extended to other methods such as grid coding, gated and active polarization imaging.
Virtually all structured light methods assume that the scene and the sources are immersed in pure air and that light is neither scattered nor absorbed. Recently, however, structured lighting has found growing application in underwater and aerial imaging, where scattering effects cannot be ignored. In this paper, we present a comprehensive analysis of two representative methods -light stripe range scanning and photometric stereo -in the presence of scattering. For both methods, we derive physical models for the appearances of a surface immersed in a scattering medium. Based on these models, we present results on (a) the condition for object detectability in light striping and (b) the number of sources required for photometric stereo. In both cases, we demonstrate that while traditional methods fail when scattering is significant, our methods accurately recover the scene (depths, normals, albedos) as well as the properties of the medium. These results are in turn used to restore the appearances of scenes as if they were captured in clear air. Although we have focused on light striping and photometric stereo, our approach can also be extended to other methods such as grid coding, gated and active polarization imaging.
Virtually all structured light methods assume that the scene and the sources are immersed in pure air and that light is neither scattered nor absorbed. Recently, however, structured lighting has found growing application in underwater and aerial imaging, where scattering effects cannot be ignored. In this paper, we present a comprehensive analysis of two representative methods -light stripe range scanning and photometric stereo -in the presence of scattering. For both methods, we derive physical models for the appearances of a surface immersed in a scattering medium. Based on these models, we present results on (a) the condition for object detectability in light striping and (b) the number of sources required for photometric stereo. In both cases, we demonstrate that while traditional methods fail when scattering is significant, our methods accurately recover the scene (depths, normals, albedos) as well as the properties of the medium. These results are in turn used to restore the appearances of scenes as if they were captured in clear air. Although we have focused on light striping and photometric stereo, our approach can also be extended to other methods such as grid coding, gated and active polarization imaging.
Abstract. Active vision techniques use programmable light sources, such as projectors, whose intensities can be controlled over space and time. We present a broad framework for fast active vision using Digital Light Processing (DLP) projectors. The digital micromirror array (DMD) in a DLP projector is capable of switching mirrors "on" and "off" at high speeds (10 6 /s). An off-the-shelf DLP projector, however, effectively operates at much lower rates (30-60Hz) by emitting smaller intensities that are integrated over time by a sensor (eye or camera) to produce the desired brightness value. Our key idea is to exploit this "temporal dithering" of illumination, as observed by a high-speed camera. The dithering encodes each brightness value uniquely and may be used in conjunction with virtually any active vision technique. We apply our approach to five well-known problems: (a) structured light-based range finding, (b) photometric stereo, (c) illumination de-multiplexing, (d) high frequency preserving motion-blur and (e) separation of direct and global scene components, achieving significant speedups in performance. In all our methods, the projector receives a single image as input whereas the camera acquires a sequence of frames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.