We propose a new technique for visual attribute transfer across images that may have very different appearance but have perceptually similar semantic structure. By visual attribute transfer, we mean transfer of visual information (such as color, tone, texture, and style) from one image to another. For example, one image could be that of a painting or a sketch while the other is a photo of a real scene, and both depict the same type of scene. Our technique finds semantically-meaningful dense correspondences between two input images. To accomplish this, it adapts the notion of "image analogy" [Hertzmann et al. 2001] with features extracted from a Deep Convolutional Neutral Network for matching; we call our technique deep image analogy. A coarse-to-fine strategy is used to compute the nearest-neighbor field for generating the results. We validate the effectiveness of our proposed method in a variety of cases, including style/texture transfer, color/style swap, sketch/painting to photo, and time lapse.
Figure 1: Our image completion algorithm automatically extracts mid-level constraints (perspective and regularity) and uses them to guide the filling of missing regions in a semantically meaningful way. Our method is capable of completing challenging scenes such as multiple building facades (left), strong perspective distortion (middle) and large regular repetitive structures (right). We significantly outperform three representative state-of-the-art image completion techniques for these images (see Figure 2). Image credits (left to right): Flickr users micromegas, Theen Moy, Nicu Buculei. AbstractWe propose a method for automatically guiding patch-based image completion using mid-level structural cues. Our method first estimates planar projection parameters, softly segments the known region into planes, and discovers translational regularity within these planes. This information is then converted into soft constraints for the low-level completion algorithm by defining prior probabilities for patch offsets and transformations. Our method handles multiple planes, and in the absence of any detected planes falls back to a baseline fronto-parallel image completion algorithm. We validate our technique through extensive comparisons with state-of-the-art algorithms on a variety of scenes.
The ability to interactively control viewpoint while watching a video is an exciting application of image-based rendering. The goal of our work is to render dynamic scenes with interactive viewpoint control using a relatively small number of video cameras. In this paper, we show how high-quality video-based rendering of dynamic scenes can be accomplished using multiple synchronized video streams combined with novel image-based modeling and rendering algorithms. Once these video streams have been processed, we can synthesize any intermediate view between cameras at any time, with the potential for space-time manipulation.In our approach, we first use a novel color segmentation-based stereo algorithm to generate high-quality photoconsistent correspondences across all camera views. Mattes for areas near depth discontinuities are then automatically extracted to reduce artifacts during view synthesis. Finally, a novel temporal two-layer compressed representation that handles matting is developed for rendering at interactive rates.
We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps, while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results from the feature film Charade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.