This paper introduces a new corpus of read English speech, suitable for training and evaluating speech recognition systems. The LibriSpeech corpus is derived from audiobooks that are part of the LibriVox project, and contains 1000 hours of speech sampled at 16 kHz. We have made the corpus freely available for download, along with separately prepared language-model training data and pre-built language models. We show that acoustic models trained on LibriSpeech give lower error rate on the Wall Street Journal (WSJ) test sets than models trained on WSJ itself. We are also releasing Kaldi scripts that make it easy to build these systems.
We present our work on end-to-end training of acoustic models using the lattice-free maximum mutual information (LF-MMI) objective function in the context of hidden Markov models. By end-to-end training, we mean flat-start training of a single DNN in one stage without using any previously trained models, forced alignments, or building state-tying decision trees. We use full biphones to enable context-dependent modeling without trees, and show that our end-to-end LF-MMI approach can achieve comparable results to regular LF-MMI on well-known large vocabulary tasks. We also compare with other end-to-end methods such as CTC in character-based and lexicon-free settings and show 5 to 25 percent relative reduction in word error rates on different large vocabulary tasks while using significantly smaller models.
We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding zero resource (unsupervised) speech technologies and related models of early language acquisition. Centered around the tasks of phonetic and lexical discovery, we consider unified evaluation metrics, present two new approaches for improving speaker independence in the absence of supervision, and evaluate the application of Bayesian word segmentation algorithms to automatic subword unit tokenizations. Finally, we present two strategies for integrating zero resource techniques into supervised settings, demonstrating the potential of unsupervised methods to improve mainstream technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.