Calreticulin is a calcium-binding chaperone that has several functions in the immune response. In the endoplasmic reticulum (ER), calreticulin facilitates the folding of major histocompatibility complex (MHC) class I molecules and their assembly factor tapasin, thereby influencing antigen presentation to cytotoxic T cells. Although calreticulin is normally ER-resident, it is found at the cell surface of living cancer cells and dying cells. Here, calreticulin promotes cellular phagocytic uptake. In tumor vaccine models, drugs that induce cell-surface calreticulin confer enhanced tumor protection in an extracellular calreticulin-dependent manner. Much remains to be understood about the roles of calreticulin in these distinct functions. Further investigations are important towards advancing basic knowledge of glycoprotein folding pathways, and towards developing new cancer therapeutic strategies.
Calreticulin is a soluble calcium-binding chaperone of the endoplasmic reticulum (ER) that is also detected on the cell surface and in the cytosol. Calreticulin contains a single high affinity calcium-binding site within a globular domain and multiple low affinity sites within a C-terminal acidic region. We show that the secondary structure of calreticulin is remarkably thermostable at a given calcium concentration. Rather than corresponding to complete unfolding events, heat-induced structural transitions observed for calreticulin relate to tertiary structural changes that expose hydrophobic residues and reduce protein rigidity. The thermostability and the overall secondary structure content of calreticulin are impacted by the divalent cation environment, with the ER range of calcium concentrations enhancing stability, and calciumdepleting or high calcium environments reducing stability. Furthermore, magnesium competes with calcium for binding to calreticulin and reduces thermostability. The acidic domain of calreticulin is an important mediator of calcium-dependent changes in secondary structure content and thermostability. Together, these studies indicate interactions between the globular and acidic domains of calreticulin that are impacted by divalent cations. These interactions influence the structure and stability of calreticulin, and are likely to determine the multiple functional activities of calreticulin in different subcellular environments.
Background:We investigated the different modes of calreticulin-substrate binding. Results: Calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct kinetics and P-domain conformations. Conclusion: Successful substrate recruitment by calreticulin requires glycan and P-domain-dependent interactions. Significance: Elucidation of the distinct modes of calreticulin binding to substrate glycan and polypeptide components and their combined contributions to substrate recruitment in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.