This Letter reports on the use of a spatial phase-shifting algorithm in a fast, straightforward method of real-time quantitative phase imaging. The computation time for phase extraction is five times faster than a Fourier transform and twice as fast as a Hilbert transform. The fact that the phase extraction from an interferogram of 512 × 512 pixels takes less than 8.93 ms with a typical desktop computer suggests the proposed method can be readily applied to high-speed dynamic quantitative phase imaging. The proposed method of quantitative phase imaging is effective and sufficiently general for application to the dynamic phenomena of biological samples.
We describe how spectrally-resolved white-light phase-shifting interference microscopy with a windowed 8-step algorithm can be used for rapid and accurate measurements of the thickness profile of transparent thin film layers with a wide range of thicknesses deposited upon patterned structures exhibiting steps and discontinuities. An advantage of this technique is that it can be implemented with readily available hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.