Bismuth ferrite (BiFeO3, BFO) submicron cubes and 3D BFO/graphene composite materials were synthesized by a simple hydrothermal process. The crystallization processes of the 3D BFO/graphene composites with different graphene oxide (GO) concentrations were studied for their visible light photocatalytic properties. Compared to the single BFO submicron cubes, 3D BFO/graphene composites have greatly improved photocatalytic activity. A high photocatalytic performance is obtained at a GO concentration of 3 mg/mL, with the degradation rate of methylene blue (MB) dye reaching up to 92% in 140 min. The enhancement of photocatalytic activity can be attributed to the large specific surface area and 3D architecture of 3D composites, which provide more transport paths to effectively improve the separation rate of photo-generated electrons and holes. Therefore, 3D BFO/graphene composites have a broad prospect of application in the field of photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.