Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Encouraged by these results, we provide an extensive empirical evaluation of CNNs on largescale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes. We study multiple approaches for extending the connectivity of the a CNN in time domain to take advantage of local spatio-temporal information and suggest a multiresolution, foveated architecture as a promising way of speeding up the training. Our best spatio-temporal networks display significant performance improvements compared to strong feature-based baselines (55.3% to 63.9%), but only a surprisingly modest improvement compared to single-frame models (59.3% to 60.9%). We further study the generalization performance of our best model by retraining the top layers on the UCF-101 Action Recognition dataset and observe significant performance improvements compared to the UCF-101 baseline model (63.3% up from 43.9%).
We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.
Introduction: The mulberry tree (Morus alba L.) is a prolific source of biologically active compounds. There is considerable growing interest in probing M. alba twigs as a source of disruptive antioxidant lead candidates for cosmetic skin care product development.Objective: An integrated approach using high-performance liquid chromatography (HPLC) coupled with either chemical detection (CD) or high-resolution mass spectrometry (HRMS) was applied to the hydroalcoholic extract of M. alba to detect and identify lead antioxidant compounds, respectively.
We propose a novel multivariate uniformity criterion for testing uniformity of point density in an arbitrary dimensional point pattern . An unsupervised, nonparametric data clustering algorithm, using this criterion, is also presented. The algorithm relies on a relatively general notion of cluster so that it is applicable to clusters of relatively unrestricted shapes, densities and sizes. We define a cluster as a set of contiguous interior points surrounded by border points. We use our uniformity test to differentiate between interior and border points. We group interior points to form cluster cores, and then identify cluster borders as formed by the border points neighboring the cluster cores. The algorithm is effective in resolving clusters of different shapes, sizes and densities. It is relatively insensitive to outliers. We present results for experiments performed on artificial and real data sets.
Abstract. We present a novel scale adaptive, nonparametric approach to clustering point patterns. Clusters are detected by moving all points to their cluster cores using shift vectors. First, we propose a novel scale selection criterion based on local density isotropy which determines the neighborhoods over which the shift vectors are computed. We then construct a directed graph induced by these shift vectors. Clustering is obtained by simulating random walks on this digraph. We also examine the spectral properties of a similarity matrix obtained from the directed graph to obtain a K-way partitioning of the data. Additionally, we use the eigenvector alignment algorithm of [1] to automatically determine the number of clusters in the dataset. We also compare our approach with supervised[2] and completely unsupervised spectral clustering[1], normalized cuts[3], K-Means, and adaptive bandwidth meanshift[4] on MNIST digits, USPS digits and UCI machine learning data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.