Developing effective immunotherapies with low toxicity and high tumor specificity is the ultimate goal in the battle against cancer. Here, we reported a cell-membrane immunotherapy strategy that was able to eliminate primary tumors and inhibited distant tumors by using natural killer (NK) cell membrane cloaked photosensitizer 4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP)-loaded nanoparticles (NK-NPs). The proteomic profiling of NK cell membranes was performed through shotgun proteomics, and we found that NK cell membranes enabled the NK-NPs to target tumors and could induce or enhance pro-inflammatory M1-macrophages polarization to produce antitumor immunity. The TCPP loaded in NK-NPs could induce cancer cell death through photodynamic therapy and consequently enhanced the antitumor immunity efficiency of the NK cell membranes. The results confirmed that NK-NPs selectively accumulated in the tumor and were able to eliminate primary tumor growth and produce an abscopal effect to inhibit distant tumors. This cell-membrane immunotherapeutic approach offers a strategy for tumor immunotherapy.
Hypoxia is a common characteristic of solid tumors. This important feature is associated with resistance to radio-chemotherapy, which results in poor prognosis and probability of tumor recurrence. Taking advantage of background-free NIR II fluorescence imaging and deeper-penetrating photoacoustic (PA) imaging, we developed a hypoxia-triggered and nitroreductase (NTR) enzyme-responsive single molecule probe for high-contrast NIR II/PA tumor imaging and hypoxia-activated photothermal therapy (PTT), which will overcome cellular resistance during hypoxia.Methods: The single molecule probe IR1048-MZ was synthesized by conjugating a nitro imidazole group as a specific hypoxia trigger with an IR-1048 dye as a NIR II/PA signal reporter. We investigated the NIR II fluorescence, NIR absorbance and photothermal effect in different hypoxia conditions in vitro, and performed NIR II/PA tumor imaging and hypoxia-activated photothermal therapy in mice.Results: This versatile molecular probe IR1048-MZ not only realized high-contrast tumor visualization with a clear boundary by NIR II fluorescence imaging, but also afforded deep-tissue penetration at the centimeter level by 3D PA imaging. Moreover, after being activated by NTR that is overexpressed in hypoxic tumors, the probe exhibited a significant photothermal effect for curative tumor ablation with no recurrence.Conclusions: We have developed the first hypoxia-triggered and NTR enzyme-responsive single molecule probe for high-contrast NIR II/PA tumor imaging and hypoxia-activated photothermal therapy. By tracing the activity of NTR, IR1048-MZ may be a promising contrast agent and theranostic formulation for other hypoxia-related diseases (such as cancer, inflammation, stroke, and cardiac ischemia).
Phototherapy is a promising treatment method for cancer therapy. However, the various factors have greatly restricted phototherapy development, including the poor accumulation of photosensitizer in tumor, hypoxia in solid tumor tissue and systemic phototoxicity. Herein, a mitochondrial-targeted multifunctional dye-anchored manganese oxide nanoparticle (IR808@MnO NP) is developed for enhancing phototherapy of cancer. In this nanoplatform, IR808 as a small molecule dye acts as a tumor targeting ligand to make IR808@MnO NPs with capacity to actively target tumor cells and relocate finally in the mitochondria. Meanwhile, continuous production of oxygen (O ) and regulation of pH induced by the high reactivity and specificity of MnO NPs toward mitochondrial endogenous hydrogen peroxide (H O ) could effectively modulate tumor hypoxia and lessen the tumor subacid environment. Large amounts of reactive oxide species (ROS) are generated during the reaction process between H O and MnO NPs. Furthermore, under laser irradiation, IR808 in IR808@MnO NPs turns O into a highly toxic singlet oxygen ( O ) and generates hyperthermia. The results indicate that IR808@MnO NPs have the high efficiency of specific targeting of tumors, relieving tumor subacid environment, improving the tumor hypoxia environment, and generating large amounts of ROS to kill tumor cells. It is expected to have a wide application in treating cancer.
The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5′-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.