This paper proposes spatial distribution patternbased subpixel mapping (SPM S ) as a novel subpixel mapping (SPM) strategy. It separately considers spatial distribution patterns of different types of geographical objects. Initially, it classifies geographical objects into areal, linear, and point patterns according to their spatially geometric characteristics. For the different patterns, SPM S uses the vectorial boundary-based SPM algorithm with the spatial dependence assumption to deal with areal objects, the linear template matching-based SPM algorithm for linear objects, and the spatial pattern consistency matching-based SPM algorithm for point objects. The three patterns are integrated to generate a subpixel map. An artificially created image and two remotely sensed images were used to evaluate the performance of SPM S . The results were compared with a traditional hard classifier and seven existing SPM methods. The experimental results demonstrated that SPM S performed better than the hard classification and traditional SPM methods, particularly when dealing with linear and point objects.
Super-resolution mapping (SRM) is used to obtain fine-scale land cover maps from coarse remote sensing images. Spatial attraction, geostatistics, and using prior geographic information are conventional approaches used to derive fine-scale land cover maps. As the convolutional neural network (CNN) has been shown to be effective in capturing the spatial characteristics of geographic objects and extrapolating calibrated methods to other study areas, it may be a useful approach to overcome limitations of current SRM methods. In this paper, a new SRM method based on the CNN (SRMCNN) is proposed and tested. Specifically, an encoder-decoder CNN is used to model the nonlinear relationship between coarse remote sensing images and fine-scale land cover maps. Two real-image experiments were conducted to analyze the effectiveness of the proposed method. The results demonstrate that the overall accuracy of the proposed SRMCNN method was 3% to 5% higher than that of two existing SRM methods. Moreover, the proposed SRMCNN method was validated by visualizing output features and analyzing the performance of different geographic objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.