Various advanced catalysts based on sulfur-doped Fe/N/C materials have recently been designed for the oxygen reduction reaction (ORR); however, the enhanced activity is still controversial and usually attributed to differences in the surface area, improved conductivity, or uncertain synergistic effects. Herein, a sulfur-doped Fe/N/C catalyst (denoted as Fe/SNC) was obtained by a template-sacrificing method. The incorporated sulfur gives a thiophene-like structure (C-S-C), reduces the electron localization around the Fe centers, improves the interaction with oxygenated species, and therefore facilitates the complete 4 e ORR in acidic solution. Owing to these synergistic effects, the Fe/SNC catalyst exhibits much better ORR activity than the sulfur-free variant (Fe/NC) in 0.5 m H SO .
The fabrication of Zn‐CO2 batteries is a promising technique for CO2 fixation and energy storage. Herein, nitrogen‐doped ordered mesoporous carbon (NOMC) is adopted as a bifunctional metal‐free electrocatalyst for CO2 reduction and oxygen evolution reaction in the near‐neutral electrolyte. The ordered mesoporous structures and abundant N‐dopings of NOMC facilitate the accessibility and utilization of the active sites, which endow NOMC with excellent electrocatalysis performance and outstanding stability. Especially, a nearly 100% CO Faradaic efficiency is achieved at an ultralow overpotential of 360 mV for CO2 reduction. When constructed as an aqueous rechargeable Zn‐CO2 battery using NOMC as the cathode, it yields a high peak power density of 0.71 mW cm−2, a good cyclability of 300 cycles, and excellent energy efficiency of 52.8% at 1.0 mA cm−2.
Various advanced catalysts based on sulfur‐doped Fe/N/C materials have recently been designed for the oxygen reduction reaction (ORR); however, the enhanced activity is still controversial and usually attributed to differences in the surface area, improved conductivity, or uncertain synergistic effects. Herein, a sulfur‐doped Fe/N/C catalyst (denoted as Fe/SNC) was obtained by a template‐sacrificing method. The incorporated sulfur gives a thiophene‐like structure (C−S−C), reduces the electron localization around the Fe centers, improves the interaction with oxygenated species, and therefore facilitates the complete 4 e− ORR in acidic solution. Owing to these synergistic effects, the Fe/SNC catalyst exhibits much better ORR activity than the sulfur‐free variant (Fe/NC) in 0.5 m H2SO4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.