A multisignaling Hg(II) sensor based on a benzimidazole substituted BODIPY framework was designed, which displays excellent selectively toward Hg(II) in vitro and in vivo. Optical and fluorogenic measurements in solution reveal that the sensor can detect mercury ions at submicromolar concentrations, with high specificity. The detection of Hg(II) is associated with a blue-shift in optical spectra and a simultaneous increase in the fluorescence quantum yield of the sensor, which is attributed to a decrease in charge delocalization and inhibition of photoinduced electron transfer upon binding to Hg(II). Using several spectroscopic measurements, it is shown that the binding mechanism involves two sensor molecules, where lone pairs of the benzimidazole nitrogen coordinate to a single mercury ion. The utility of this BODIPY sensor to detect Hg(II) in vivo was demonstrated by fluorescence imaging and spectroscopy of labeled human breast adenocarcinoma cells. While average emission intensity of the sensor over a large number of cells increases with incubated mercury concentrations, spatially resolved fluorescence spectroscopy performed on individual cells reveals clear spectral blue-shifts from a subensemble of sensors, corroborating the detection of Hg(II). Interestingly, the emission spectra at various submicrometer locations within cells exhibited considerable inhomogeneity in the extent of blue-shift, which demonstrates the potential of this sensor to monitor the local (effective) concentration of mercury ions within various subcellular environments.
Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.
Cyanide is one of the most toxic inorganic anions, it is very harmful to human health but extremely useful in industrial activities. Herein, we used our recently reported boradiazaindacene (BODIPY) dye, 3,5-diformyl-borondipyrromethene (BODIPY 1) as an exclusive chemodosimetric and colorimetric sensor for CN(-) ion. Cyanide ion attacks the carbonyl groups of 1 via a nucleophilic addition reaction and converts to cyanohydrin which is reflected in the clear colour change as well as by the absorption, emission and electrochemical properties. Thus BODIPY 1 can be used as a colorimetric and chemodosimetric sensor for CN(-) ion. Furthermore, to show that the position of the formyl group on BODIPY plays an important role in the ability of BODIPY dye to act as a chemodosimetric sensor for CN(-) ion, we synthesized another formyl group containing BODIPY dye, 3, in which the formyl group is present at the para-position of the meso-phenyl group. (1)H NMR studies confirmed the formation of the cyanohydrin form of BODIPY dye 3 on addition of CN(-) ion but dye 3 cannot be used as a chemodosimetric sensor for CN(-) ion, as verified by absorption and fluorescence studies. The detection of cyanide with BODIPY dye 1 for biological application was also performed in MDA-MB-231 cells.
The synthesis and characterization of a triazole linked quinoline appended calix[4]arene conjugate, L, and its fluorescence turn on receptor property for Fe(3+) have been demonstrated. The selective and sensitive discrimination of Fe(3+) has been shown using fluorescence and absorption titration experiments. The Fe(3+) binding to L has been further shown by ITC and ESI MS. The mode of binding of Fe(3+) by calix[4]arene conjugate has been shown by absorption, (1)H NMR and visual color change and the species were modeled based on DFT computations. The {L + Fe(3+)} has been shown to label cells with fluorescence imaging. Moreover the utility of this conjugate has been demonstrated by the combination logic gate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.