MATCH provides an overview of segmentation methodologies for IAs and highlights the variability of surface reconstruction. Further, the study emphasizes the need for careful processing of initial segmentation results for a realistic assessment of clinically relevant morphological parameters.
Cerebral aneurysms constitute a major medical challenge as treatment options are limited and often associated with high risks. Statistically, up to 3% of patients with a brain aneurysm may suffer from bleeding for each year of life. Eight percent of all strokes are caused by ruptured aneurysms. In order to prevent this rupture, endovascular stenting using so called flow diverters is increasingly being regarded as an alternative to the established coil occlusion method in minimally invasive treatment. Covering the neck of an aneurysm with a flow diverter has the potential to alter the hemodynamics in such a way as to induce thrombosis within the aneurysm sac, stopping its further growth, preventing its rupture and possibly leading to complete resorption. In the present study the influence of different flow diverters is quantified considering idealized patient configurations, with a spherical sidewall aneurysm placed on either a straight or a curved parent vessel. All important hemodynamic parameters (exchange flow rate, velocity, and wall shear stress) are determined in a quantitative and accurate manner using computational fluid dynamics when varying the key geometrical properties of the aneurysm. All simulations are carried out using an incompressible, Newtonian fluid with steady conditions. As a whole, 72 different cases have been considered in this systematic study. In this manner, it becomes possible to compare the efficiency of different stents and flow diverters as a function of wire density and thickness. The results show that the intra-aneurysmal flow velocity, wall shear stress, mean velocity, and vortex topology can be considerably modified thanks to insertion of a suitable implant. Intra-aneurysmal residence time is found to increase rapidly with decreasing stent porosity. Of the three different implants considered in this study, the one with the highest wire density shows the highest increase of intra-aneurysmal residence time for both the straight and the curved parent vessels. The best hemodynamic modifications are always obtained for a small aneurysm diameter.
Aortic dissection treatment varies for each patient and stenting is one of a number of approaches that are utilized to Stabilize the condition. Information regarding the hemodynamic forces in the aorta in dissected and virtually stented cases could support clinicians in their choices of treatment prior to medical intervention. Computational fluid dynamics coupled with lumped parameter models have shown promise in providing detailed information that could be used in the clinic; for this, it is necessary to develop personalized workflows in order to produce patient-specific simulations. In the present study, a case of pre- and post-stenting (virtual stent-graft) of an aortic dissection is investigated with a particular focus on the role of personalized boundary conditions. For each virtual case, velocity, pressure, energy loss, and wall shear stress values are evaluated and compared. The simulated single stent-graft only marginally reduced the pulse pressure and systemic energy loss. The double stent-graft results showed a larger reduction in pulse pressure and a 40% reduction in energy loss as well as a more physiological wall shear stress distribution.Regions of potential risk were highlighted. The methodology applied in the present study revealed detailed information about two possible surgical outcome cases and shows promise as both a diagnostic and an interventional tool.
IntroductionModern coil-adjunctive intracranial stent designs have increased metal surface coverage to construct putative ‘flow diverter lights.’ This is rooted in the assumption that flow diversion is linearly correlated with metal surface coverage rather than being a threshold to be reached by device porosity and design.ObjectiveTo evaluate this assumption, by performing computational flow analysis on three aneurysm models treated with low metal surface coverage stents (ATLAS and Enterprise), a Pipeline flow diverter, and the LVIS Blue stent.MethodsComputational flow analysis was performed on virtual deployment models entailing deployment of an ATLAS, Enterprise, LVIS Blue, or Pipeline. The impact of device deployment on velocity vectors at the neck, maximum wall shear stress, inflow rate into the aneurysm, and turnover time was determined.ResultsVelocity vector plots demonstrated low magnitude, localized inflow jets for Pipeline only; asymmetric, selectively high inflow jets were seen for LVIS Blue, and broader velocity vector clusters were seen for Atlas and Enterprise. Reduction in wall shear stress as compared with baseline was significant for all devices and greatest for the Pipeline. Mean peak wall shear stress was significantly lower for LVIS Blue in comparison with ATLAS or Enterprise but significantly lower for Pipeline than for LVIS Blue. Reduction of inflow rate into the aneurysm was significant for LVIS Blue and Pipeline but significantly lower for Pipeline than for LVIS Blue. Turnover time was statistically similar for ATLAS, Enterprise, and LVIS Blue, but significantly increased for Pipeline.ConclusionConsiderable differences in peak wall shear stress, inflow rates, and turnover time between flow diverters, moderate- and low-porosity stents reinforce the assumption that effective flow diversion represents a threshold in device design, encompassing metal surface coverage only in part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.