Among the other members of the adhesion molecules' family, α 4 β 1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α 4 β 1 functions in human pathologies, we report an overview of synthetic α 4 β 1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α 4 β 1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over b-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over barrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and b-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.
By dissecting the structure of β-lactam-based ligands, a new series of compounds was designed, synthesized, and evaluated toward integrins αvβ3, α5β1, and α4β1. New selective ligands with antagonist or agonist activities of cell adhesion in the nanomolar range were obtained. The best agonist molecules induced significant adhesion of SK-MEL-24 cells and Saos-2 cells as a valuable model for osteoblast adhesion. These data could lead to the development of new agents to improve cellular osseointegration and bone regeneration. Molecular modeling studies on prototypic compounds and αvβ3 or α5β1 integrin supported the notion that ligand carboxylate fixing to the metal ion-dependent adhesion site in the β-subunit can be sufficient for binding the receptors, while the aryl side chains play a role in determining the selectivity as well as agonism versus antagonism.
In recent years, several studies suggested that the ability of hyperbaric oxygen therapy (HBOT) to promote healing in patients with diabetic ulcers and chronic wounds is due to the reduction of inflammatory cytokines and to a significant decrease in neutrophils recruitment to the damaged area. α 4 and β 2 integrins are receptors mediating the neutrophil adhesion to the endothelium and the comprehension of the effects of hyperbaric oxygenation on their expression and functions in neutrophils could be of great importance for the design of novel therapeutic protocols focused on anti-inflammatory agents. In this study, the α 4 and β 2 integrins' expression and functions have been evaluated in human primary neutrophils obtained from patients with chronic non-healing wounds and undergoing a prolonged HBOT (150 kPa per 90 minutes). The effect of a peptidomimetic α 4 β 1 integrin antagonist has been also analyzed under these conditions. A statistically significant decrease (68%) in β 2 integrin expression on neutrophils was observed during the treatment with HBO and maintained one month after the last treatment, while α 4 integrin levels remained unchanged. However, cell adhesion function of both neutrophilic integrins α 4 β 1 and β 2 was significantly reduced 70 and 67%, respectively), but α 4 β 1 integrin was still sensitive to antagonist inhibition in the presence of fibronectin, suggesting that a combined therapy between HBOT and integrin antagonists could have greater antinflammatory efficacy.
Construction of small molecule ligand (SML) based delivery systems has been performed starting from a polyfunctionalized isoxazoline scaffold, whose α v β 3 and α 5 β 1 integrins' potency has been already established. The synthesis of this novel class of ligands was obtained by conjugation of linkers to the heterocyclic core via Huisgen-click reaction, with the aim to use them as "shuttles" for selective delivery of diagnostic agents to cancer cells, exploring the effects of the side chains in the interaction with the target. Compounds 17b and 24 showed excellent potency towards α 5 β 1 integrin acting as selective antagonist and agonist respectively. Further investigations confirmed their effects on target receptor through the analysis of fibronectin-induced ERK1/2 phosphorylation. In addition, confocal microscopy analysis allowed us to follow the fate of EGFP conjugated α 5 β 1 integrin and 17b FITCconjugated (compound 31) inside the cells. Moreover, the stability in water solution at different values of pH and in bovine serum confirmed the possible exploitation of these peptidomimetic molecules for pharmaceutical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.