Confidence estimation for automatic speech recognition has been very recently improved by using Recurrent Neural Networks (RNNs), and also by speaker adaptation (on the basis of Conditional Random Fields). In this work, we explore how to obtain further improvements by combining RNNs and speaker adaptation. In particular, we explore different speakerdependent and-independent data representations for Bidirectional Long Short Term Memory RNNs of various topologies. Empirical tests are reported on the LibriSpeech dataset showing that the best results are achieved by the proposed combination of RNNs and speaker adaptation.
Abstract. Online multimedia repositories are growing rapidly. However, language barriers are often difficult to overcome for many of the current and potential users. In this paper we describe a TTS Spanish system and we apply it to the synthesis of transcribed and translated video lectures. A statistical parametric speech synthesis system, in which the acoustic mapping is performed with either HMM-based or DNN-based acoustic models, has been developed. To the best of our knowledge, this is the first time that a DNN-based TTS system has been implemented for the synthesis of Spanish. A comparative objective evaluation between both models has been carried out. Our results show that DNN-based systems can reconstruct speech waveforms more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.