Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined to optimize the protein production in a fed-batch fermenter. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Experiments in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature.Keywords-Fed-batch bioreactors, Control system design, Nonlinear model, Linear algebra. I. INTRODUCCIÓNA INDUSTRIA bioquímica ha crecido significativamente a través de las últimas dos décadas[1-3], con un creciente interés en la síntesis de grandes cantidades de productos por medio de microorganismos [4]. Usualmente, muchos procesos de la industria bioquímica son operados de forma fedbatch [5]. La operación fed-batch es una de las más populares en la industria bioquímica. En esta clase de bioreatores el sustrato es alimentado gradualmente dentro del reactor, pero el producto es unicamenteremovido al finalizar el proceso. El principal objetivo es la de evitar la sobrealimentación del sustrato, el cual puede inhibir el crecimiento de losmicoorganismos.Por otra lado, los procesos fed-batch presentan a veces algunos problemas desafiantes.Por ejemplo, la mayoría de sus modelos dinámicos son no lineales y rigidos,y generalmente incluyen parámetros que varían con el tiempo [3]. Estos problemas hacen que el control del proceso sea una tarea ardua [6].Un ítem importante en los problemas de control óptimos consiste en el seguimiento de los cambios en el set point sin producir oscilaciones indeseadas o evitar tiempos de operación largos para reducir los errores de seguimiento. Existen muchos factores que complican particularmente el control de los fermentadores, por ejemplo los procesos exhiben comportamiento dinámico no lineal; rara vez están disponibles modelos precisos de los procesos debido a la complejidad de las reacciones bioquímicas implicadas; y generalmente los parámetros que varían con el tiempo son desconocidos [5].Considere un reactor fed-batch con la meta de optimización de maximizar la cantidad de una proteína secretada al final del proceso. Este problema de control óptimo ha sido estudiado por varios autores [7-10]. El principal aporte del presente trabajo es diseñar un controlador capaz de lograr reproducibilidad entre lotes sucesivos al tiempo que se siguen perfiles óptimos determinados por otros autores.Respecto a esto último, se propone un acercamiento comprensible para el seguimiento de los perfiles óptimos. Para cumplir tal objetivo, se asume lo siguiente: (i) el procesoes adecuadamente modelado a través de un modelo matemático; (ii) los perfiles óptimos deseados de las concentraciones son conocidos; y (iii) la acción de control que mueve al sistema desde su estado actual hacia el deseado puede ser calculada.En la metodología pro...
In this paper the problem of trajectory tracking considers that the values of the control actions do not exceed a maximum allowable value and the zero convergence of tracking errors is demonstrated. The control law is based on a linear algebra approach. First, the desired trajectories of some state variables are determined by analyzing the conditions for a system of linear equations to have an exact solution. Therefore, the control signals are obtained by solving the system of linear equations. The optimal controller parameters are selected through nonlinear programming so as to prevent the saturation of the control actions. Experimental results are presented and discussed, demonstrating the controller's good performance. Finally, the performance of the proposed controller is compared with a fuzzy controller, and all the results are validated through experimental laboratory tests.
The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.