Agradecimientos AbstractAn accurate fault diagnosis of both, faults sensors and real process faults have become more and more important for process monitoring (minimize downtime, increase safety of plant operation and reduce the manufacturing cost). Quick and correct fault diagnosis is required in order to put back on track our processes or products before safety or quality can be compromised. In the study and comparison of the fault diagnosis methodologies, this thesis distinguishes between two different scenarios, methods for multivariate statistical quality control (MSQC) and methods for latent-based multivariate statistical process control: (Lb-MSPC). In the first part of the thesis the state of the art on fault diagnosis and identification (FDI) is introduced. The second part of the thesis is devoted to the fault diagnosis in multivariate statistical quality control (MSQC). The rationale of the most extended methods for fault diagnosis in supervised scenarios, the requirements for their implementation, their strong points and their drawbacks and relationships are discussed. The performance of the methods is compared using different performance indices in two different process data sets and simulations. New variants and methods to improve the diagnosis performance in MSQC are also proposed. The third part of the thesis is devoted to the fault diagnosis in latent-based multivariate statistical process control (Lb-MSPC). The rationale of the most extended methods for fault diagnosis in supervised Lb-MSPC is described and one of our proposals, the Fingerprints contribution plots (FCP) is introduced. Finally the thesis presents and compare the performance results of these diagnosis methods in Lb-MSPC. The diagnosis results in two process data sets are compared using a new strategy based in the use of the overall sensitivity and specificity. iv v ResumenLa realización de un diagnóstico preciso de los fallos, tanto si se trata de fallos de sensores como si se trata de fallos de procesos, ha llegado a ser algo de vital importancia en la monitorización de procesos (reduce las paradas de planta, incrementa la seguridad de la operación en planta y reduce los costes de producción). Se requieren diagnósticos rápidos y correctos si se quiere poder recuperar los procesos o productos antes de que la seguridad o la calidad de los mismos se pueda ver comprometida. En el estudio de las diferentes metodologías para el diagnóstico de fallos esta tesis distingue dos escenarios diferentes, métodos para el control de estadístico multivariante de la calidad (MSQC) y métodos para el control estadístico de procesos basados en el uso de variables latentes (Lb-MSPC). En la primera parte de esta tesis se introduce el estado del arte sobre el diagnóstico e identificación de fallos (FDI). La segunda parte de la tesis está centrada en el estudio del diagnóstico de fallos en control estadístico multivariante de la calidad. Se describen los fundamentos de los métodos más extendidos para el diagnóstico en escenarios supervisados, sus requerim...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.