Abstract:The generation of enormous volumes of mine-tailing waste is standard practice in the mining industry. Large quantities of these tailings are also sources of kaolinite-rich materials that accumulate in slag heaps, causing significant environmental degradation and visual impacts on the landscape. The consequences of coal refuse dumped in slagheaps calls for the study of eco-innovative solutions and the assessment of waste types. Moreover, the environmental benefits of reusing large amounts of contaminated waste are also evident. Hence, the objective of this investigation is to expand current knowledge of new siliceous-aluminium minerals and their pozzolanic activity. Four raw tailing samples are characterized to determine their chemical (by ICP/MS analysis), morphological (by SEM/EDX analysis), and mineralogical (by XRD analysis) compositions prior to their thermal activation that transforms the inert wastes at various temperatures into materials with cementitious properties. The results of XRD analysis following activation confirmed that the kaolinite content is fully transformed into metakaolinite. The coal refuse samples presented sufficiently reliable levels of pozzolanic activity for use as additives in industrial cements.
The processes focused on stone cutting generate a large volume of waste. Small size waste, silt/clay, is not used and goes to landfill. However, the composition of these wastes makes them useful for adding to cements and for use in construction. In the present paper, 10% Ordinary Portland cement is replaced by 10% waste from granite sawmill, which is studied to obtain sustainable ecological cement. This replacement provides advantages from the morphological and chemical point of view at the cements. The waste has a particle size that does not exceed 15 µm and that when replacing in the cement, after the hydration reaction, generates structures where Calcium Silicate Hydrate (C-S-H) gels and double layered hydroxide compounds (LDH) are reaction products formed in high concentration. These products develop stable phases in the structures over long time periods such one year, which was the time frame used in this study.
The cement industry is one of the world’s largest CO2 emitters. The need to minimize these emissions, and assimilate by substitution and different types of waste, are challenges faced in the European Union. The use of granite sawmill from the ornamental stone industry allows for the manufacturing of pozzolanic cements, in which 10% and 20% of ordinary Portland cement (OPC) has been replaced by waste. In the present paper, properties of cements and mortars have been tested (when fresh and once set), such as workability, setting, retraction, mechanical resistance to bending and compression, elastic modulus to compression, creep, retraction, and durability. In all cases and substitution proportions, the results have been as satisfactory as those achieved with OPC, even better, allowing a second life to the waste, and participating in the principles of the circular economy. Bot substitutions are very resistant and have great durability for the gelifraction processes from the new green cements. Using this waste—granite sawmill—its volume is minimized and transfer to a landfill is avoided.
One source of kaolinite-rich wastes is from mine tailings and the generation of enormous volumes of mine tailings waste is standard practice in this industry. These volumes of waste are, at present, dumped, provoking significant environmental impact and transforming the environment. The impact of storing coal waste requires the study of eco-innovative solutions for the assessment of waste types. The present investigation has the objective of expanding the knowledge on the behavior of new siliceous-aluminum minerals with pozzolanic activity, of added value in the manufacture of similar cements. Four samples were characterized to determine their chemical, morphological and mineralogical composition. The samples were subjected to different thermal activation conditions for the transformation of an inert waste into a material with cementitious properties. XRD analysis have confirmed the total transformation of kaolinite into metakaolinite. The results have shown that after the activation process, the coal refuse presented good pozzolanic activity, meaning that it may be used as a pozzolanic addition in industrial cements, thereby removing high levels of contaminated waste from the environment. In subsequent investigations, research work will continue with the replication of cements with this pozzolanic addition for use in the manufacture of sleepers and slab track railway system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.