The processes focused on stone cutting generate a large volume of waste. Small size waste, silt/clay, is not used and goes to landfill. However, the composition of these wastes makes them useful for adding to cements and for use in construction. In the present paper, 10% Ordinary Portland cement is replaced by 10% waste from granite sawmill, which is studied to obtain sustainable ecological cement. This replacement provides advantages from the morphological and chemical point of view at the cements. The waste has a particle size that does not exceed 15 µm and that when replacing in the cement, after the hydration reaction, generates structures where Calcium Silicate Hydrate (C-S-H) gels and double layered hydroxide compounds (LDH) are reaction products formed in high concentration. These products develop stable phases in the structures over long time periods such one year, which was the time frame used in this study.
The relative low stiffness of industrial robots is a major limitation on the development of flexible and reconfigurable systems in applications in which process forces and vibration lead into significant tool path deviations with respect to the programmed path as in the case of robotic machining. This paper presents a novel factorial procedure that allows for the preliminary study of the main conditions in robotic machining operations and it determines the critical factors that are affecting the machining path of any robotic cell in order to obtain the process conditions with lower path deviations. In this procedure the most influential robotic machining constraints were identified and classified, the factorial design of experiments was used to enable the execution of the experimental tests and the machining tool path deviation predictive methodology (PREMET) was used to determine the cutting tool path deviation between the programmed and the experimental path as a function of the process variables. Experimental trials have been carried out in order to determine the main factors that affect the robotic machining and influence the main constraints of the process, showing a reduction greater than a 36% of the cutting tool path deviation in groove milling of aluminum. The critical factors identified in order of importance are: hardness of the material, location of the workpiece, orientation of milling head relative to working direction and cutting conditions. This procedure can be extended to future factorial studies to improve the precision of robotic machining (in operations such as face milling, contouring, pocketing) and to establish design criteria for machining robotic cells.
This work analyzes the difference in stiffness in a steel laboratory structure using clamped joints or bolted joints and analyzes if the stiffness varies in the same way when the frame is subjected to external dynamic loads that bring the joint materials to their yield strength. To make this comparison, the differences between clamp joint and bolted joint were evaluated using a novel methodology based on the analysis of the structure’s natural frequencies from accelerometers. To perform this comparison, several laboratory tests were carried out on a frame made by clamped joints and the same frame made by bolted joints, using a set of tests on a medium-scale shake table for this purpose. The results achieved have verified the methodology used as adequate.
Asset management, as a global process through which value is added to a company, is a managerial model that involves major changes in strategies, technologies, and resources; risk management; and a change in the attitude of the people involved. The growing commitment of companies to sustainability results in them applying this approach to all their activities. For this reason, it is relevant to develop sustainability risk assessment procedures in industrial assets. This paper presents a methodological framework for the inclusion of sustainability aspects in the risk management of industrial assets. This approach presents a procedure to provide general criteria, methodology, and essential mandatory requirements to be adopted for the identification, analysis, and evaluation of sustainability aspects, impacts, and risks related to assets owned and managed by an industrial company. The proposed procedure is based on ISO 55,000 and ISO 31,000 standards and was developed following three steps: a preliminary study, identification of sustainability aspects and sustainability risks/opportunities, and impact assessment and residual risks management. Our results could serve as a model that facilitates the improvement of sustainability analysis risks in industrial assets and could be used as a basis for future developments in the application of the standards to optimize management of these assets.
Safety is a fundamental aspect to take into account in the design, construction and operation of industrial parks. Therefore, it is important to know how to deal with safety in this type of facility, and how to deal with risk analysis. This document provides information related to the industrial park risk assessment process to improve the health and safety of workers in these places. A search and consultation of references related to occupational health and safety management systems is carried out, and it is found that, although there is adequate protection, both in relation to the safety of workers in industrial parks and the safety of personnel outside the facilities, it is helpful to establish a health and safety risk assessment to identify hazards and hazardous events, evaluate associated risks, and select techniques or strategies (opportunities) to manage those risks after prioritization. Following the implementation of the selected techniques, their effectiveness can then be monitored in order to avoid incidents. This document can be a model for future implementation of a health and safety management system based in ISO 45001:2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.