ABSTRACT. The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (2015) (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.