In this paper, a detailed analysis of a recoil system of an artillery gun has been carried out with a view to minimize recoil length by absorbing the thrust produced due to firing and bring the gun barrel to its original position for the next round of fire. In many structural and defense applications, minimization of recoil length is one of the major concerns. A lot of research work has been carried out on the recoil mechanism of an artillery gun to improve its mobility in the hilly region. The effect of recoil mass displacement and high fire rate to improve the overall efficiency of an artillery gun has been studied. In this work, the performance of an artillery gun recoil system is studied by using a damper with electrorheological (ER) fluid. Experimental and numerical studies are carried out to evaluate the performance of the recoil system in terms of recoil length and total recoil time at different elevation angles of firing, ranging from 0 to 80°. It is seen that the use of developed ER damper in the gun recoil system improves its dynamic performance.
Purpose Recoil length minimization is always been a top concern in various structural, industrial, and defence applications. The traditional passive recoil system is not able to respond quickly to the changes in the impact force. These limitations can be overcome by introducing a semi-active recoil system, which comprises an intelligent fluid damper. Design, methodology, and approach The electrorheological (ER) fluid, which responds to the applied electric field and exhibits high yield strength, will be a proper damper for the recoil system. An ER damper can bring back the vibrating system to its equilibrium in a brief period. In this article, the general design procedure of an ER fluid semi-active damper has been developed, which is suitable for a recoil system. The equations of damping forces (viscous, quadratic, and ER) are modified in terms of geometric parameter, namely the piston diameter (D P), which can be selected to obtain the desired dynamic range (greater than two) and optimum damping force. With the MATLAB software, the damper and spring specifications are fixed to meet the required conditions, viz. the dynamic range should be greater than two, and the total damping and spring force should counter-recoil the system. Findings Results obtained for a case study of gunfire conclude that the recoil system developed using design specifications exhibits desired performance with maximum recoil of 75.59 mm at 80°, angle of elevation, which is within the allowable range of 150 mm. It is shown that the rate of firing can be increased by decreasing the recoil length. Originality and value The novel procedure for the design of ER damper outlined in this work will be helpful for any recoil length minimization problem.
The combination of biopolymers with bioceramics plays vital role in development of artificial bone. Hydroxyapatite is extensively used as a material in prosthetic bone repair and replacement. In this paper synthesis of Hydroxyapatite- Polymethyl methacrylate – Zirconia (Hap-PMMA-ZrO2) composite by using powder metallurgy technique. The mechanical, morphological, In-vitro biocompatibility and tribological properties were characterized by universal testing machine, micro-vickers hardness tester, high resolution transmission electron microscope (HR-TEM), MTT assay and pin-on-disc setup. In-vitro cytotoxicity test on HeLa cell lines shows cell viability constant when doses concentration increases so material found non-toxic. Results show that micro Vickers hardness i.e. 520 approximately matches with natural human bone i.e. 400. Compressive strength is less as compared to human bone because of powder metallurgy route used for fabrication and is 74 MPa. Density of proposed composite artificial human bone i.e. 1.52 g/cc is less as compared to natural bone i.e. 2.90 g/cc. The Hap-PMMA-ZrO2 composite will be good biomaterials for bone repair and replacement work
Modern automobile technology is pushing towards maximizing road safety, connected vehicles, autonomous vehicles, etc. Automotive RADAR is core sensor technology used for ADAS (Advanced Driver Assistance Technology), ACC (Adaptive Cruise Control), AEB (Automatic Emergency Braking System), traffic assistance, parking aid, and obstacle/pedestrian detection. Despite being inexpensive, RADAR technology provides robust results in harsh conditions such as harsh weather, extreme temperature, darkness, etc. However, the performance of these systems depends on the position of the RADAR and its characteristics like frequency, beamwidth, and bandwidths. Moreover, the characterization of varied materials like layers of paint, polish, primer, or layer of rainwater needs to be analyzed. This performance can be predicted through real-time simulation using advanced FEM software like Altair FEKO&WinProp. These simulations can provide valuable insight into the performance of the system, allowing engineers to optimize the system for specific use cases. For example, simulation can be used to determine the optimal parameters of the RADAR system for a given application. This information can then be used to design and build a physical model or prototype that is optimized for the desired performance. These simulations play a prominent role in determining appropriate data collection and sensor fusion, which reduces the cost and time required for the development of a physical model or prototype. The continued growth and demand for advanced safety features in vehicles further highlight the importance of RADAR technology in modern automobile technology. By accurately characterizing the environment and simulating the system's behavior in real time, engineers can optimize RADAR systems for specific use cases, contributing to safer and more efficient driving experiences
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.