One of the challenges in the development of germanium nanowires (Ge NWs) is to increase their length beyond the 10 μm limit without enlarging the NW diameter, i.e. minimizing the tapering. Here we report how it is possible to overcome this hurdle by using isobutyl germane (iBuGe) as a metal organic precursor during MOCVD growth, instead of the commonly used germane. We have grown and characterized by transmission electron microscopy, scanning electron microscopy and Raman various samples and we have analyzed the effect of growth time, precursor flux and growth temperature on the NW length. The use of iBuGe coupled to optimized growth conditions permitted to obtain Ge NWs with lengths up to 30 μm with minimal tapering. To explain why a new precursor has this impact on the morphology of the NWs we consider two possible causes: (i) the role of carbon radicals produced by isobutyl decomposition and (ii) the reduced growth rate of Ge on the sidewalls. On the basis of Raman characterization and temperature-dependence of tapering, we conclude that the reduced tapering is probably due to lower growth rates on the sidewalls.
We demonstrate the feasibility of the use of isobutyl germane, a novel germanium source, for the vapor–liquid–solid growth of germanium nanowires (NWs) on Si (111) substrates, using a thin gold layer as catalyst. The density and the diameter of the NWs were controlled by varying the Au layer thickness and the isobutyl germane flow. The NWs grow along (111) directions and show perfect crystallinity and lengths from several hundreds of nm to 3–4 μm. The use of isobutyl germane gives a considerable technological advantage in the growth of germanium NWs since it is a safer and more manageable germanium source and it allows to grow Ge NWs in a standard vapor phase epitaxy system at 400 °C.
We report a detailed characterization of Ge NWs directly grown on glass by a MOVPE system, showing how different growth parameters can affect the final outcome and comparing NWs grown on a monocrystalline Ge(111) substrate with NWs grown on amorphous glass. Our experimental results indicate that the choice of the substrate does not affect any of the relevant morphological, crystallographic or electrical properties of Ge NWs. Lengths are in the 20-30 micrometer range with minimal tapering, while growth rates are very similar to to NWs grown on Ge(111); TEM and Raman characterization show a very good crystallinity of measured nanostructures. We have also analyzed the growth process on glass and we were able to reach a conclusion on the specific growth mechanism for Ge NWs on amorphous substrates. Our findings demonstrate that glass is a valid option as cheap substrate for the mass production of these nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.