Abstract. Occupancy analyses represent a crucial topic for building performance. At present, this is even true because of the pandemic emergency due to SARS-CoV-2 and the need to support the functional analysis of building spaces in relation to social distancing rules. Moreover, the need to assess the suitability of spaces in high occupancy buildings as the educational ones, for which occupancy evaluations result pivotal to ensure the safety of the end-users in their daily activities, is a priority. The proposed paper investigates the steps that are needed to secure a safe re-opening of an educational building. A case study has been selected as a test site to analyse the re-opening steps as required by Italian protocols and regulations. This analysis supported the school director of a 2-to-10 year old school and its team in the decision-making process that led to the safe school re-opening. Available plants and elevations of the building were collected and a fast digital survey was carried out using the mobile laser scanner technology (iMMS - Indoor Mobile Mapping System) in order to acquire three-dimensional geometries and digital photographic documentation of the spaces. A crowd simulation software (i.e. Oasys MassMotion) was implemented to analyse end-users flows; the social distance parameter was set in its proximity modelling tools in order to check the compliance of spaces and circulation paths to the social distancing protocols. Contextually to the analysis of users flows, a plan of hourly air changes to maintain a high quality of the environments has been defined.
The paper provides a support in the definition of COVID-19 protocols in order to allow the safe re-opening of an educational building. It also derives a reusable approach extendable to other building typologies. The integrated adoption of multiple simulation-oriented technologies is investigated. A case study is considered, where crowd simulation, agent-based simulation and communication tools have been integrated with a hybrid approach. By means of computer games, the adoption of which is within the scope of this paper, end-users can experience school use processes within a virtual environment (1) contributing to the realism of the simulation and (2) obtaining useful information regarding the protocols in force to reduce COVID-19 risks.
In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.
Abstract. Technological developments of the last decades are making possible to speed up different processes involved in construction projects. It is noticeable what building information modeling (BIM) can offer during the entire lifecycle of a project by integrating graphical and non graphical data, in addition to this, mapping the site with a 3D laser scan has been proved to provide a feasible workflow to compare as built models with as designed BIM, in this way, an automatic construction progress monitoring can also be performed. Terrestrial laser scanners (TLS) are commonly used to map a construction site due the level of accuracy provided, but indoor mobile mapping systems (iMMS) could offer a more efficient approach by speeding up the acquisition time and capturing all the details of the site just by walking through it, provided that the point cloud is accurate enough for the purpose of interest. In this paper, an iMMS is used to track the progress of a construction site, the point clouds were uploaded onto a platform of autonomous construction progress monitoring to verify if the system can meet the requirements of available applications. The results showed that the iMMS used is capable to produce point clouds with a quality such that the construction progress monitoring can be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.