This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
We present a simple and cost-effective strategy for developing gelatin methacryloyl (GelMA) hydrogels supplemented with minimally processed tissue (MPT) to fabricate densely packed skeletal-muscle-like tissues. MPT powder was prepared from skeletal muscle by freeze-drying, grinding, and sieving. Cell-culture experiments showed that the incorporation of 0.5–2.0% (w/v) MPT into GelMA hydrogels enhances the proliferation of murine myoblasts (C2C12 cells) compared to proliferation in pristine GelMA hydrogels and GelMA supplemented with decellularized skeletal-muscle tissues (DCTs). MPT-supplemented constructs also preserved their three-dimensional (3D) integrity for 28 days. By contrast, analogous pristine GelMA constructs only maintained their structure for 14 days or less. C2C12 cells embedded in MPT-supplemented constructs exhibited a higher degree of cell alignment and reached a significantly higher density than cells loaded in pristine GelMA constructs. Our results suggest that the addition of MPT incorporates a rich source of biochemical and topological cues, such as growth factors, glycosaminoglycans (GAGs), and structurally preserved proteins (e.g., collagen). In addition, GelMA supplemented with MPT showed suitable rheological properties for use as bioinks for extrusion bioprinting. We envision that this simple and cost-effective strategy of hydrogel supplementation will evolve into an exciting spectrum of applications for tissue engineers, primarily in the biofabrication of relevant microtissues for in vitro models and cultured meat and ultimately for the biofabrication of transplant materials using autologous MPT.
Nanotechnology is an interdisciplinary field that promises to reshape many spheres of our lives. One core activity in nanotechnology is the synthesis of nanoparticles. Here, we introduce a research-based activity centered on the use of zein, the main constitutive protein in maize, as a raw material for the synthesis of nanoparticles. In the context of the contingency imposed by COVID-19, this experimental activity was designed to be independent of a central laboratory. Therefore, it was enabled by a portable heating do-it-yourself (DIY) device that the students assembled in their own home. We describe the implementation of this activity as part of a graduate-level seminar series, and share our observations. We assessed the students’ knowledge on seven topics related to nanotechnology, do-it-yourself devices, and protein synthesis. The students appeared to perceive that their degree of knowledge had advanced (on average) in all the learning topics; the students stated that their degree of knowledge in the topics of assembly of devices and protein structure had advanced the most. The results of this assessment suggest that this simple, hands-on, research-based activity effectively engaged students in a learning process that allowed them to integrate knowledge while exercising their experimental skills. In addition, we show that these types of activities are suitable for implementation even in circumstances of restricted access to laboratory facilities, such as the ones recently experienced during the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.