Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator (
CFTR
) gene [1]. The CFTR protein is an ion channel that mediates chloride and bicarbonate transport in epithelial cells of multiple organs including lungs, pancreas and intestine [2, 3]. A defective CFTR protein produces an impaired ion and fluid secretion in the epithelial cells affecting several organs and leading to severe lung disease. More than 2000 CF-causing mutations have been identified [4, 5]. The most common mutation, the deletion of phenylalanine at position 508 (F508del), induces misfolding of the protein that is retained in the endoplasmic reticulum and degraded by proteasomal pathways [6].
This article provides testimonials of the past and current chairs and co-chairs of the ECMC (@EarlyCareerERS) and a glimpse of the NEXT programme, along with participants’ experiences.
https://bit.ly/3LzvqKf
In this review, the Paediatric Assembly of the European Respiratory Society (ERS) presents a summary of the highlights and most relevant findings in the field of paediatric respiratory medicine presented at the virtual ERS International Congress 2020. Early Career Members of the ERS and Chairs of the different Groups comprising the Paediatric Assembly discuss a selection of the presented research. These cover a wide range of research areas, including respiratory physiology and sleep, asthma and allergy, cystic fibrosis, respiratory infection and immunology, neonatology and intensive care, epidemiology, bronchology and lung and airway development. Specifically, we describe the long-term effect in lung function of premature birth, mode of delivery and chronic respiratory conditions such as cystic fibrosis. In paediatric asthma, we present risk factors, phenotypes and their progression with age, and the challenges in diagnosis. We confirm the value of the lung clearance index to detect early lung changes in cystic fibrosis. For bronchiectasis treatment, we highlight the importance of identifying treatable traits. The use of biomarkers and genotypes to identify infants at risk of long-term respiratory morbidity is also discussed. We present the long-term impact on respiratory health of early life and fetal exposures to maternal obesity and intrauterine hypoxia, mechanical ventilation hyperoxia, aeroallergens, air pollution, vitamin A deficient intake and bronchitis. Moreover, we report on the use of metabolomics and genetic analysis to understand the effect of these exposures on lung growth and alveolar development. Finally, we stress the need to establish multidisciplinary teams to treat complex airway pathologies.
This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.