Obesity is a highly heritable multifactorial disease that places an enormous burden on human health. Its increasing prevalence and the concomitant-reduced life expectancy has intensified the search for new analytical methods that can reduce the knowledge gap between genetic susceptibility and functional consequences of the disease pathology. Although the influence of genetics and epigenetics has been studied independently in the past, there is increasing evidence that genetic variants interact with environmental factors through epigenetic regulation. This suggests that a combined analysis of genetic and epigenetic variation may be more effective in characterizing the obesity phenotype. To date, limited genome-wide integrative analyses have been performed. In this review, we provide an overview of the latest findings, advantages, and challenges and discuss future perspectives.
Genome-wide copy number surveys associated chromosome 11q11 with obesity. As this is an olfactory receptor-rich region, we hypothesize that genetic variation in olfactory receptor genes might be implicated in the pathogenesis of obesity. Multiplex Amplicon Quantification analysis was applied to screen for copy number variants at chromosome 11q11 in 627 patients with obesity and 330 healthy-weight individuals. A ± 80 kb deletion with an internally 1.3 kb retained segment was identified, covering the three olfactory receptor genes OR4C11 , OR4P4 , and OR4S2 . A significant increase in copy number loss(es) was perceived in our patient cohort (MAF = 27%; p = 0.02). Gene expression profiling in metabolic relevant tissues was performed to evaluate the functional impact of the obesity susceptible locus. All three 11q11 genes were present in visceral and subcutaneous adipose tissue while no expression was perceived in the liver. These results support the ‘metabolic system’ hypothesis and imply that gene disruption of OR4C11 , OR4P4 , and OR4S2 will negatively influence energy metabolism, ultimately leading to fat accumulation and obesity. Our study thus demonstrates a role for structural variation within olfactory receptor-rich regions in complex diseases and defines the 11q11 deletion as a risk factor for obesity.
Background The multifactorial nature of non-alcoholic fatty liver disease cannot be explained solely by genetic factors. Recent evidence revealed that DNA methylation changes take place at proximal promoters within susceptibility genes. This emphasizes the need for integrating multiple data types to provide a better understanding of the disease’s pathogenesis. One such candidate gene is paraoxonase-1 (PON1). Substantial interindividual differences in PON1 are apparent and could influence disease risk later in life. The aim of this study was therefore to determine the different regulatory aspects of PON1 variability and to examine them in relation to the predisposition to obesity-associated fatty liver disease. Results A targeted multi-omics approach was applied to investigate the interplay between PON1 genetic variants, promoter methylation, expression profile and enzymatic activity in an adult patient cohort with extensive metabolic and hepatic characterisation including liver biopsy. Alterations in PON1 status were shown to correlate with waist-to-hip ratio and relevant features of liver pathology. Particularly, the regulatory polymorphism rs705379:C > T was strongly associated with more severe liver disease. Multivariable data analysis furthermore indicated a significant association of combined genetic and epigenetic PON1 regulation. This identified relationship postulates a role for DNA methylation as a mediator between PON1 genetics and expression, which is believed to further influence liver disease progression via modifications in PON1 catalytic efficiency. Conclusions Our findings demonstrate that vertical data-integration of genetic and epigenetic regulatory mechanisms generated a more in-depth understanding of the molecular basis underlying the development of obesity-associated fatty liver disease. We gained novel insights into how NAFLD classification and outcome are orchestrated, which could not have been obtained by exclusively considering genetic variation.
Recently, it was reported that heterozygous PCSK1 variants, causing partial PC1/3 deficiency, result in a significant increased risk for obesity. This effect was almost exclusively generated by the rare p.Y181H (rs145592525, GRCh38.p13 NM_000439.5:c.541T>C) variant, which affects PC1/3 maturation but not enzymatic capacity. As most of the identified individuals with the heterozygous p.Y181H variant were of Belgian origin, we performed a follow-up study in a population of 481 children and adolescents with obesity, and 486 lean individuals. We identified three obese (0.62%) and four lean (0.82%) p.Y181H carriers (p = 0.506) through sanger sequencing and high resulting melting curve analysis, indicating no association with obesity. Haplotype analysis was performed in 13 p.Y181H carriers, 20 non-carriers (10 with obesity and 10 lean), and two p.Y181H families, and showed identical haplotypes for all heterozygous carriers (p < 0.001). Likewise, state-of-the-art literature concerning the role of rare heterozygous PCSK1 variants implies them to be rarely associated with monogenic obesity, as first-degree carrier relatives of patients with PC1/3 deficiency are mostly not reported to be obese. Furthermore, recent meta-analyses have only indicated a robust association for scarce disruptive heterozygous PCSK1 variants with obesity, while clinical significance is less or sometimes lacking for most nonsynonymous variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.