Although accurate assessment of the prevalence of Schistosoma mansoni is important for the design and evaluation of control programs, the most widely used tools for diagnosis are limited by suboptimal sensitivity, slow turn-around-time, or inability to distinguish current from former infections. Recently, two tests that detect circulating cathodic antigen (CCA) in urine of patients with schistosomiasis became commercially available. As part of a larger study on schistosomiasis prevalence in young children, we evaluated the performance and diagnostic accuracy of these tests—the carbon test strip designed for use in the laboratory and the cassette format test intended for field use. In comparison to 6 Kato-Katz exams, the carbon and cassette CCA tests had sensitivities of 88.4% and 94.2% and specificities of 70.9% and 59.4%, respectively. However, because of the known limitations of the Kato-Katz assay, we also utilized latent class analysis (LCA) incorporating the CCA, Kato-Katz, and schistosome-specific antibody results to determine their sensitivities and specificities. The laboratory-based CCA test had a sensitivity of 91.7% and a specificity of 89.4% by LCA while the cassette test had a sensitivity of 96.3% and a specificity of 74.7%. The intensity of the reaction in both urine CCA tests reflected stool egg burden and their performance was not affected by the presence of soil transmitted helminth infections. Our results suggest that urine-based assays for CCA may be valuable in screening for S. mansoni infections.
Abstract. Although schistosomiasis burden is greatest among school-age children (SAC) (6-15 years of age), infection among preschool-age children (PSAC) (1-5 years), may be underestimated in endemic areas. We conducted a crosssectional study evaluating Schistosoma mansoni infection among children 1-15 years of age in a highly endemic community in Kenya. Diagnostic tests included stool exam (Kato/Katz technique), serum testing for schistosome-specific antibodies, and urine testing for circulating cathodic antigen (CCA). Overall, 268 SAC and 216 PSAC were enrolled; prevalence increased with age, with 14% of 1 year olds and more than 90% of children > 10 years of age infected. Stool exam was more sensitive among SAC than PSAC, but performance was similar after adjusting for infection intensity (based on CCA). Schistosomiasis poses a threat to PSAC in endemic areas, and stool exam may underestimate the prevalence of infection. Control programs in such areas should consider PSAC in addition to SAC.
Abstract. A better understanding of the mechanism of anemia associated with Schistosoma mansoni infection might provide useful information on how treatment programs are implemented to minimize schistosomiasis-associated morbidity and maximize treatment impact. We used a cross-sectional study with serum samples from 206 Kenyan school children to determine the mechanisms in S. mansoni-associated anemia. Serum ferritin and soluble transferrin receptor levels were measured by using an enzyme-linked immunosorbent assay. Results suggest that S. mansoni-infected persons are more likely (odds ratio = 3.68, 95% confidence interval = 1.33-10.1) to have levels of serum ferritin ( 100 ng/mL) that are associated with anemia of inflammation (AI) than S. mansoni-uninfected children. Our results suggest that AI is the most common form of anemia in S. mansoni infections. In contrast, the mechanism of anemia in S. mansoni-uninfected children was iron deficiency. Moreover, the prevalence of AI in the study participants demonstrated a significant trend with S. mansoni infection intensity (P 0.001). Our results are consistent with those observed in S. japonicum-associated anemia.
Trichomonas vaginalis is a protozoan parasite that is the cause of the most common non-viral sexually transmitted disease, trichomoniasis. Metronidazole and tinidazole are the only drugs approved for treatment of T. vaginalis infections in the USA. However, drug resistance exists and some patients are allergic to these medications. Furthermore, the exact mechanism of metronidazole resistance remains undefined and current testing methods require several weeks before results are available. Identification of the mechanism of drug resistance may lead to the development of molecular tools to detect drug resistance, and quicker results for clinical treatment. In a recent study, Chinese T. vaginalis isolates that were polymerase chain reaction (PCR) positive for Mycoplasma hominis DNA demonstrated greater in vitro resistance to metronidazole than isolates with no evidence of M. hominis infection. To evaluate this finding in isolates from a distinct epidemiologic setting, we tested 55 T. vaginalis isolates collected from patients in the USA through the Centers for Disease Control and Prevention metronidazole susceptibility testing service. One half of the isolates demonstrated resistance to metronidazole by an in vitro sensitivity assay. Of the metronidazole-resistant T. vaginalis isolates, 18% were PCR positive for M. hominis, as were 22% of the metronidazole-susceptible T. vaginalis isolates (p = 0.746). We also observed no change in metronidazole sensitivity of two infected T. vaginalis isolates after they were cleared of their M. hominis infection by culturing the isolates in antibiotics. Thus, M. hominis infection of USA T. vaginalis isolates did not correlate with in vitro resistance to metronidazole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.