Background: Most ALK-positive lung cancers will develop ALK-independent resistance after treatment with next-generation ALK inhibitors. MET amplification has been described in patients progressing on ALK inhibitors, but frequency of this event has not been comprehensively assessed. Methods: We performed fluorescence in-situ hybridization and/or next-generation sequencing on 207 post-treatment tissue (n=101) or plasma (n=106) specimens from patients with ALK-positive lung cancer to detect MET genetic alterations. We evaluated ALK inhibitor sensitivity in cell lines with MET alterations and assessed antitumor activity of ALK/MET blockade in ALK-positive cell lines and two patients with MET-driven resistance. Results: MET amplification was detected in 15% of tumor biopsies from patients relapsing on next-generation ALK inhibitors, including 12% and 22% of biopsies from patients progressing on second-generation inhibitors or lorlatinib, respectively. Patients treated with a second-generation ALK inhibitor in the first-line setting were more likely to develop MET amplification than those who had received next-generation ALK inhibitors after crizotinib (p=0.019). Two tumor specimens harbored an identical ST7-MET rearrangement, one of which had concurrent MET amplification. Expressing ST7-MET in the sensitive H3122 ALK-positive cell line induced resistance to ALK inhibitors that was reversed with dual ALK/MET inhibition. MET inhibition re-sensitized a patient-derived cell line harboring both ST7-MET and MET amplification to ALK inhibitors. Two patients with ALK-positive lung cancer and acquired MET alterations achieved rapid responses to ALK/MET combination therapy. Conclusions: Treatment with next-generation ALK inhibitors, particularly in the first-line setting, may select for MET-driven resistance. Patients with acquired MET alterations may derive clinical benefit from therapies that target both ALK and MET.
Purpose
ALK rearrangements predict for sensitivity to ALK tyrosine kinase inhibitors (TKIs). However, responses to ALK TKIs are generally short-lived. Serial molecular analysis is an informative strategy for identifying genetic mediators of resistance. Although multiple studies support the clinical benefits of repeat tissue sampling, the clinical utility of longitudinal circulating tumor DNA analysis has not been established in ALK-positive lung cancer.
Methods
Using a 566-gene hybrid-capture next-generation sequencing (NGS) assay, we performed longitudinal analysis of plasma specimens from 22 ALK-positive patients with acquired resistance to ALK TKIs to track the evolution of resistance during treatment. To determine tissue-plasma concordance, we compared plasma findings to results of repeat biopsies.
Results
At progression, we detected an ALK fusion in plasma from 19 (86%) of 22 patients, and identified ALK resistance mutations in plasma specimens from 11 (50%) patients. There was 100% agreement between tissue- and plasma-detected ALK fusions. Among 16 cases where contemporaneous plasma and tissue specimens were available, we observed 100% concordance between ALK mutation calls. ALK mutations emerged and disappeared during treatment with sequential ALK TKIs, suggesting that plasma mutation profiles were dependent on the specific TKI administered. ALK G1202R, the most frequent plasma mutation detected after progression on a second-generation TKI, was consistently suppressed during treatment with lorlatinib.
Conclusions
Plasma genotyping by NGS is an effective method for detecting ALK fusions and ALK mutations in patients progressing on ALK TKIs. The correlation between plasma ALK mutations and response to distinct ALK TKIs highlights the potential for plasma analysis to guide selection of ALK-directed therapies.
Alectinib demonstrated preliminary antitumor activity in patients with advanced RET-rearranged NSCLC, most of whom had received prior RET inhibitors. Larger prospective studies with longer follow-up are needed to assess the efficacy of alectinib in RET-rearranged NSCLC and other RET-driven malignancies. In parallel, development of more selective, potent RET TKIs is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.